Valorization of Benthic Macroinvertebrates Produced from Pig Dung in Clarias gariepinus Fries Feeding

Authors

  • Hotèkpo Hervé Akodogbo Research Laboratory in Applied Biology (LARBA), Polytechnic School of Abomey-Calavi (EPAC), University of Abomey-Calavi (UAC), 01 PO box 2009, Cotonou, Benin
  • Koudjodé Simon Abahi Laboratory of Ecology, Health and Animal Productions (LESPA), Faculty of Agronomy, University of Parakou, PO box 123, Parakou, Benin
  • Fridolin Ubald Dossou-Sognon Research Laboratory in Applied Biology (LARBA), Polytechnic School of Abomey-Calavi (EPAC), University of Abomey-Calavi (UAC), 01 PO box 2009, Cotonou, Benin
  • Emile Didier Fiogbe Research Laboratory on Wetlands (LRZH), Faculty of Sciences and Technical (FAST), University of Abomey-Calavi (UAC), PO box 526, Cotonou, Benin

Keywords:

Fish farming, artificial feed, macroinvertebrates, supplementation, production, pig dung

Abstract

Fish feeding is one of the main factors hindering the development of fish farming in developing countries. The objective of this study was to determine the optimal artificial feed ration to be fed as a supplement to macroinvertebrate fed fry for semi-intensive production of Clarias gariepinus. To this end, the survival and growth performance of Clarias gariepinus fries fed with macroinvertebrates produced from pig dung and artificial feed were compared to those of fry fed with dry feed only. Fries with an initial weight of 0.52 ± 0.15g were distributed in the 15 buckets with a density of 0.6 ind.L-1 and grouped into four (04) treatments (T1, T2, T3 and T4) and a control (T0); they were fed for 05 weeks. Fries reared in T1, T2, T3 and T4 were fed with 75%, 50%, 25% and 0% dry feed respectively, while those in T0 were fed with 100% dry feed. All four treatments contain macroinvertebrates produced in mass. The physicochemical parameters of the water, the survival and growth parameters of the fry were assessed. The results showed that the physicochemical parameters of the water were within the recommended standards for the culture of the majority of aquatic species The average final weight and specific growth rate of the fries were highest in T0 (11.95 ± 0.06 g and 8.96 ± 0.014 %.d-1), followed by T1 (10.50 ± 0.8 g and 8.58 ± 0.2 %.d-1) and T2 (10.16 ± 0.50 g and 8.49 ± 0.14 %.d-1). They are very low in T4 (01.35 ± 0.11 g and 2.72 ± 0.23 %.d-1). The specific growth rate and survival rate of T1, T2 and T0 were not significantly different (p > 0.05). T1 and T2 will therefore reduce the amount of artificial feed to be distributed; however, the optimal rate was 50% (T2). It is therefore possible to reduce the cost of fish products in a semi-intensive system.

References

FAO. La situation mondiale des pêches et de l’aquaculture?: Contribuer à la sécurité alimentaire et à la nutrition de tous. Rome, Italy, 2016, 224p.

FAO. “Aquaculture is key to meet increasing food demand, says FAO,” 2021. https://www.fao.org/news/story/en/item/1440548/icode/ [accessed Dec. 28, 2022].

FAO. Résumé de La Situation mondiale des pêches et de l’aquaculture 2022: Vers une transformation bleue. Rome. Italy: FAO, 2022, 32p.

DSA/MAEP. “Les chiffres de la campagne agricole 2021-2022 et les prévisions de la campagne agricole 2022.” Bénin, 2022, 21p.

INSAE. “Quatrième recensement général de la population et de l’habitat (RGPH4)?: que retenir des effectifs de population en 2013??.” Bénin, 2015, 33p.

DPH. “Note conceptuelle sur le développement durable de l’aquaculture continentale en République du Bénin.” Bénin, 2015, 26p.

Y. Abou, E. Hossou, E. D. Fiogbé. “Effets d’une couverture d’Azolla sur les performances de croissance et de production de Clarias gariepinus (Burchell) élevé en étangs.” Int. J. Biol. Chem. Sci., vol. 4, no. 1, pp. 201–208, 2010.

I. Imorou Toko, J. Yabi, M. Assogba, M. Adam Sanni, H. Elègbè. “Evaluation des potentialités piscicoles et socioéconomiques des retenus d’eau pastorales dans la commune de Banikoara (Nord-est du Bénin).” Annales de l’Université de Parakou Série Sciences naturelles-Agronomie, pp. 92–119, 2011.

E. Montchowui, H. Agadjihouede, E. N’tcha, P. Laleye. “Effets de milieux d’élevage sur la survie et la croissance des juvéniles de la carpe africaine, Labeo parvus Boulenger, 1902.” Int. J. Biol. Chem. Sci, vol. 6, no. 5, pp. 2131–2138, 2012.

E. Lacroix. Pisciculture en Zone Tropicale. Hamburg. Allemagne : GFA Terra Systems, 2004, 225p.

S. Harpaz. “Catfish nutrition-aspects to consider” in Proceeding of a Workshop on the Development of a Genetic Improvement Program for African Catfish Clarias gariepinus, 2007, pp. 79–81.

K. J. Rana, S. Siriwardena, M. R. Hasan. Impact of rising feed ingredient prices on aquafeeds and aquaculture production. Rome, Italy: Food and Agriculture Organization of the United Nations (FAO), 2009, 63p.

L. Hoffman, J. F. Prinsloo, G. Rukan. “Partial replacement of fish meal with either soybean meal, brewers yeast or tomato meal in the diets of African sharptooth catfish Clarias gariepinus.” Water SA, vol. 23, pp. 181–186, 1997.

A. G. Tacon, M. R. Hasan, R. P. Subasinghe. Use of fishery resources as feed inputs to aquaculture development: trends and policy implications. vol. 99. Rome, Italy: Food and Agriculture Organization of the United Nations Rome, 2006, 114p.

K. Jauncey, B. Ross. A guide to tilapia feeds and feeding. Scotland: Institute of Aquaculture, University of Stirling, 1982, 111p.

U. Gabriel, O. Akinrotimi, D. Bekibele, D. Onunkwo, P. Anyanwu. “Locally produced fish feed: potentials for aquaculture development in subsaharan Africa.” African Journal of Agricultural Research, vol. 2, pp. 287–295, 2007.

C. Crentsil, I. G. Ukpong. “Economics of fish production in Amansie-west District of Ghana: Implication for Food Security in West Africa.” Asian J. Agric. Ext. Econ. Soc., vol. 3, pp. 179–188, 2014.

N. B. Kimou, R. A. Koumi, M. K. Koffi, C. B. Atsé, I. N. Ouattara, P. L. Kouamé. “Utilisation des sous-produits agroalimentaires dans l’alimentation des poissons d’élevage en Côte d’Ivoire.” Cahiers Agricultures, vol. 25, no. 25006, pp. 1–9, 2016.

Y. Gao, J.-Y. Lee. “Compensatory responses of Nile tilapia Oreochromis niloticus under different feed-deprivation regimes.” Fisheries and aquatic sciences, vol. 15, no. 4, pp. 305–311, 2012.

O. O. Chukwuma, U. Chikwendu. “Effect of short-term cyclic feed deprivation on growth and economic limit of commercial feed-based in-door grow-out of Clarias gariepinus (Burchell, 1822).” International Journal of Fisheries and Aquaculture, vol. 5, no. 11, pp. 303–309, 2013.

A. H. Elegbe et al., “Effet du jeûne chez les juvéniles d’Oreochromis niloticus et de Clarias gariepinus sur la productivité des" whedos" du delta de l’Ouémé (Bénin, Afrique de l’Ouest),” Afrique Science, vol. 11, no. 6, pp. 125–138, 2015.

H. A. Elegbe et al. “Co-culture Clarias gariepinus-Oreochromis niloticus: quels avantages pour l’amélioration des performances zootechniques et économiques des poissons élevés dans les «whedos» du delta de l’Ouémé au Bénin?.” International Journal of Biological and Chemical Sciences. vol. 9, no. 4, pp. 1937–1949, 2015.

P. T. Agbohessi et al. “Optimisation de la productivité piscicole des étangs par l’association du jeûne et de la co-culture chez Clarias gariepinus et Oreochromis niloticus.” Journal of Applied Biosciences, vol. 130, pp. 13138–13147, 2018.

A. Bocek, « L’alimentation du poisson ». International Center for Aquaculture Swingle Hall, Auburn University, 12 p, 2019.

L. E. C. Conceição, M. Yúfera, P. Makridis, S. Morais, et M. T. Dinis, « Live feeds for early stages of fish rearing », Aquaculture Research, vol. 41, no 5, p. 613 640, 2010, doi: 10.1111/j.1365-2109.2009.02242.x.

Y. Alfiko, D. Xie, R. T. Astuti, J. Wong, et L. Wang, « Insects as a feed ingredient for fish culture: Status and trends », Aquaculture and Fisheries, vol. 7, no 2, p. 166 178, mars 2022, doi: 10.1016/j.aaf.2021.10.004.

M. L. Kuhlmann, A. L. Brandimarte, G. Y. Shimizu, et M. Anaya, « Invertebrados bentônicos como indicadores de impactos antrópicos sobre ecossistemas aquáticos continentais », Indicadores ambientais: Conceitos e aplicações, 2001.

M. V. López van Oosterom, C. S. Ocón, F. Brancolini, M. E. Maroñas, E. D. Sendra, et A. Rodrigues Capítulo, « Trophic relationships between macroinvertebrates and fish in a pampean lowland stream (Argentina) », Iheringia. Série Zoologia, vol. 103, p. 57 65, 2013.

A. Wolfram-Wais, G. Wolfram, B. Auer, E. Mikschi, A. Hain. “Feeding habits of two introduced fish species ( Lepomis gibbosus, Pseudorasbora parva) in Neusiedler See (Austria), with special reference to chironomid larvae (Diptera: Chironomidae).” Hydrobiologia, vol. 408, pp. 123–129, 1999, doi: 10.1023/A:1017014130103.

P. Das, S. C. Mandal, S. Bhagabati, M. Akhtar, S. Singh. “Important live food organisms and their role in aquaculture.” Frontiers in aquaculture, vol. 5, no. 4, pp. 69–86, 2012.

A. D. Evangelista, N. R. Fortes, C. B. Santiago. “Comparison of some live organisms and artificial diet as feed for Asian catfish Clarias macrocephalus (Günther) larvae.” Journal of applied Ichthyology, vol. 21, no. 5, pp. 437–443, 2005.

H. H. Akodogbo. “Production d’aliments vivants à partir de dejections de porc pisciculture en republique du Bénin.” Thèse de Doctorat, Université d’Abomey Calavi, Bénin, 2016, 157p.

H. H. Akodogbo, C. A. Bonou, E. D. Fiogbe. “Production of freshwater benthic macroinvertebrates from pig dung: fertilization effect and optimal dose research.” International Journal of Biological and Chemical Sciences, vol. 10, no. 1, pp. 242–254, 2016.

C. Ducarme, J.-C. Micha. “Technique de production intensive du poisson chat africain, Clarias gariepinus.” Tropicultura, vol. 21, no. 4, pp. 189–198, 2003.

S. Gilles, R. Dugué, J. Slembrouck. Manuel de production d’alevins du silure africain Heterobranchus longifilis, Paris: IRD Editions, 2001, 135p.

O. G. Edéa, L. C. Hinvi, Y. Abou, A. B. Gbangboche. “Synthèse Bibliographique sur des Paramètres Biologiques et Zootechniques du Poisson-chat Africain Clarias gariepinus Burchell, 1822.” ESJ, vol. 15, no. 27, pp. 54–88, 2019, doi: 10.19044/esj.2019.v15n27p54.

G. Teugels, C. Ozouf-Costaz, M. Legendre, M. Parrent. “A karyological analysis of the artificial hybridization between Clarias gariepinus (Burchell, 1822) and Heterobranchus longifilis Valenciennes, 1840 (Pisces; Clariidae).” Journal of fish biology, vol. 40, no. 1, pp. 81–86, 1992.

C. Mélard. Bases biologiques de l’aquaculture. Belgique: Centre de Formation et de Recherche en Aquaculture, Université de Liège, 1999, 238p.

W. Neill, J. Bryan. “Responses of fish to temperature and oxygen, and response integration through metabolic scope” in Aquaculture and water quality, advances in world aquaculture, vol. 3, Batan Rouge, Louisiana: The World Aquaculture Society, 1991, pp. 30–58.

S. Daniel, W. D. Larry, H. Joseph. “Comparative oxygen consumption and metabolismof striped bass (Morone saxatilis) and its hybrid.Bénin.” Journal of World Aquaculture Society, vol. 36, no. 4, pp. 521–529, 2005.

D. E. Angoni, M. T. Eyango, H. Djoko, J. Tchoumboué. “Performances de croissance du poisson-chat Africain Clarias jaensis Boulanger, 1909 (Pisces: Clariidae) en étangs fertilisés des fientes de poules et des lisiers de porcs.” International Journal of Innovation and Applied Studies, vol. 17, no. 4, pp. 1294–1301, 2016.

H. Hogendoorn. “Controlled propagation of the African catfish, Clarias lazera (C. & V.): IV. Effect of feeding regime in fingerling culture.” Aquaculture, vol. 24, no. 1, pp. 123–131, 1981.

J. H. Van Weerd. “Nutrition and growth in Clarias species-a review.” Aquatic Living Resources, vol. 8, no. 4, pp. 395–401, 1995.

Downloads

Published

2023-02-03

How to Cite

Hotèkpo Hervé Akodogbo, Koudjodé Simon Abahi, Fridolin Ubald Dossou-Sognon, & Emile Didier Fiogbe. (2023). Valorization of Benthic Macroinvertebrates Produced from Pig Dung in Clarias gariepinus Fries Feeding. International Journal of Natural Sciences: Current and Future Research Trends, 17(1), 9–19. Retrieved from https://ijnscfrtjournal.isrra.org/index.php/Natural_Sciences_Journal/article/view/1155

Issue

Section

Articles