Interdigitated Electrodes based Nano Bio Sensors


  • Mohammed Abdallah Associate Professor, SUNY Polytechnic Institute


Integrated Electrodes IDE, Nano Sensors, Bio Sensors


Interdigitated Electrodes IDE are used to detect and analyze cells or particles. Biosensors in general can be used in a wide range of applications to detect cells/bacteria which can be utilized in early discovery of some diseases. This review summarizes wide range of researches in this field to illustrate the different design factors when fabricating Interdigitated Electrodes IDE. These factors ranges from the fabrication process itself, sensor dimensions and shapes, space between electrodes, and sensors sensitivity and more. In this literature review, a discussion of all these design factors will be introduced.


Radke, S.; Alocilja, E. Design and fabrication of a microimpedance biosensor for bacterial detection. IEEE Sens. J. 2004, 4, 434–440.

Alexander, F. Optimization of interdigitated electrode (IDE) arrays for impedance based evaluation of Hs 578T cancer cells. J. Phys. Conf. Ser. 2010, 244, doi:10.1088/1742-6596/224/1/012134.

Chen, J.; Fang, Z.; Liu, J.; Zeng, L. A simple and rapid biosensor for ochratoxin A based on a structure-switching signaling aptamer. Food Control 2012, 25, 555–560.

Haes, A.; Chang, L. Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor. J. Am. Chem. Soc. 2005, 127, 2264–2271.

Zeng, X.; Shen, Z.; Mernaugh, R. Recombinant antibodies and their use in biosensors.

Anal. Bioanal. Chem. 2012, 402, 3027–3038.

Zheng, D.; Zou, R.; Lou, X. Label-Free Fluorescent Detection of Ions, Proteins, and Small Molecules Using Structure-Switching Aptamers, SYBR Gold, and Exonuclease I. Anal. Chem.2012, 84, 35543560.

Savran, C.; Knudsen, S. Micromechanical detection of proteins using aptamer-based receptor molecules. Anal. Chem. 2004, 76, 3194–3198.

Ahn, J.; Lee, T.H.; Li, T.; Heo, K.; Hong, S.; Ko, J.; Kim, Y.; Shin, Y.-B.; Kim, M.-G.Electrical immunosensor based on a submicron-gap interdigitated electrode and gold enhancement. Biosens. Bioelectron. 2011, 26, 4690–4696.

Berggren, C.; Stålhandske, P. A feasibility study of a capacitive biosensor for direct detection of DNA hybridization. Electroanalysis 1999, 11, 156–160.

Manickam, A.; Chevalier, A.; McDermott, M.; Ellington, A.D.; Hassibi, A. A CMOS Electrochemical Impedance Spectroscopy (EIS) Biosensor Array. IEEE Trans. Biomed. Circuits Syst. 2010, 4, 379–390.

K. Cheung S. Gawad, P. Renaud, Impedance spectroscopy flow cytometry: on chip label-free differentiation. Cytometry Part A, 65A, 124-132 (2005)

K. Cheung M. Di Berardino, G. Schade-Kapmann, M. Hebeisen, A. Pierzchalsky, J. Bocsi, A. Mittag, A. Tarnok, Microfluidic impedance-based flow cytometry, Cytometry Part A, 77A, 648-666 (2010)

D. Holmes, T. Sun, H. Morgan J. Holloway, J. Cakebread, D. Davies, Label-free Differential Leukocyte Counts Using a Microfabricated Single-Cell Impedance Spectrometer, IEEE SENSOR 2007, 1452-1455.

Grover, William Henri, "Interdigitated Array Electrode Sensors: Their Design, Efficiency, and Applications" (1999). University of Tennessee Honors Thesis Projects.

Harsanyi, G. Polymer Films in Sensor Applications: Technology, Materials, Devices and Their Characteristics; Technomic Publishing Company: Lancaster, Pennsylvania, 1995

Fraden, J. Handbook of Modem Sensors; American Institute of Physics: Woodbury, New York, 1997

Hauptmann, P. Sensors: Principles and Applications; Prentice Hall International: Hertfordshire, UK, 1991

Ibl, N. Current Distribution, in Electrodics: Transport; Yeager, E., Ed.; Plenum Press: New York, 1983; Vol. 6

Ferris, C. D. Introduction to Bioelectrodes; Plenum Press: New York, 1974

Aoki K, Tabaka M 1989 Journal of electroanalytical chemistry & interfacial electrochemistry 266 11-20

Aoki K 1990 Electroanalysis 2 229-33

Aoki K 1993 Electroanalysis 5 627-639

Aoki K 2005 Electrochemistry communications 7 523-527

Bianchi, E.; Boschetti, F.; Dubini, G.; Guiducci, C. Model of an Interdigitated Microsensor to Detect and Quantify Cells Flowing in a Test Chamber. Proceedings of the 6th Annual COMSOL Conference, Paris, France, 17–19 November 2010; p. 5.

L H D Skjolding et al 2008 J. Phys.: Conf. Ser. 100 052045

Duy Dam Le, Thi Ngoc Nhien Nguyen, Duc Chanh Tin Doan, Thi My Dung Dang and Mau Chien Dang, “Fabrication of interdigitated electrodes by inkjet printing technology for pllication in ammonia sensing,” Adv. Nat. Sci.: Nanosci. Nanotechnol. 7 (2016) 025002 (7pp)

F. Loffredo, A. De Girolamo Del Mauro, G. Burrasca, V. La Ferrara, L. Quercia,

E. Massera, G. Di Francia, D. Della Sala, “Ink-jet printing technique in polymer/carbon black sensing device fabrication,” Sensors and Actuators B 143 (2009) 421–429

Stephan Busato, Alberto Belloli, Paolo Ermanni,” Inkjet printing of palladium catalyst patterns on polyimide film for electroless copper plating,” Sensors and Actuators B 123 (2007) 840–846

M.F. Mabrook, C. Pearson, M.C. Petty,” Inkjet-printed polypyrrole thin films for vapour sensing,” Sensors and Actuators B 115 (2006) 547–551

J. Kukkola,” Novel printed nanostructured gas sensors,” Procedia Engineering 25 (2011) 896 – 899

Scott MacKay, Peter Hermansen , David Wishart and Jie Chen, “Simulations of Interdigitated Electrode Interactions with Gold Nanoparticles for Impedance-Based Biosensing Applications,” Sensors Journal 2015, 15, 22192-22208

Bonanni, A.; Fernández-Cuesta, I.; Borrisé, X.; Pérez-Murano, F.; Alegret, S.; Valle, M. DNA hybridization detection by electrochemical impedance spectroscopy using interdigitated gold nanoelectrodes. Microchim. Acta 2010, 170, 275–281.

Jan Oberländer, Zaid B. Jildeh, Patrick Kirchner, Luisa Wendeler, Alexander Bromm , Heiko Iken, Patrick Wagner, Michael Keusgen and Michael J. Schöning,” Study of Interdigitated Electrode Arrays Using Experiments and Finite Element Models for the Evaluation of Sterilization Processes,” Sensors 2015, 15, 26115-26127

I V Uvarov et al 2016 J. Phys.: Conf. Ser. 741 012167

Oliver J. Myers, M. Anjanappa and C. Freidhoff, “Designing Piezoelectric Interdigitated Microactuators using COMSOL, “the Proceedings of the COMSOL Conference 2008 Boston

Cristian Guajardoa, Sirimarn Ngamchanab, Werasak Surareungchaic, “Mathematical Modeling of Interdigitated Electrode Arrays in Finite Electrochemical Cells,” Mathematical modeling of interdigitated electrode arrays in finite electrochemical cells. Journal of Electroanalytical Chemistry, vol. 705, issue -, 2013-09-15.

Blume, S. O. P., Ben-Mrad, R., & Sullivan, P. E. (2015). Modelling the capacitance of multi-layer conductor facing interdigitated electrode structures. Sensors and Actuators B: Chemical, 213, 423–433. doi:10.1016/j.snb.2015.02.088

W. E. Morf, M. Koudelka-Hep, N. F. de Rooij, J. Electroanal. Chem. 590 (2006) 47–56.

Nenad ZORIC, Anatolie Iavorschi,” Design And Simulations Of IDC Sensor Using Comsol Multyphysics And Dielectric Spectroscopy Of Ltcc Materials,” Buletinul AGIR nr. 3/2013

Zhiwei Zou, Junhai Kai, Michael J. Rust, Jungyoup Han, Chong H. Ahn,” Functionalized nano interdigitated electrodes arrays on polymer with integrated microfluidics for direct bio-affinity sensing using impedimetric measurement,” Sensors and Actuators A 136 (2007) 518–526

A.L. Newman, K.W. Hunter,W.D. Stanbro, The capacitive affinity sensor: a new biosensor, in: Proceedings of the Second International Meeting on Chemical Sensors, Bordeaux, France, July 7–10, 1986, pp. 596–598.

Jun Tamaki,” Ultrahigh-sensitive WO3 nanosensor with interdigitated Aunano-electrode for NO2 detection,” Sensors and Actuators B 132 (2008) 234–238

Ajay KumarYagati, YonghyunChoi, JinsooPark, Jeong-WooChoi, Hee-SookJun, Sungbo Cho,” Silver nano flower–reduced graphene oxide composite basedmicro- disk electrode for insulin detection in serum,” Biosensors and Bioelectronics 80(2016)307–314

Yagati, A.K., Min, J., Cho, S., 2014. J. Electrochem. Soc. 161(14), G133–G140.




How to Cite

Abdallah, M. (2023). Interdigitated Electrodes based Nano Bio Sensors. International Journal of Natural Sciences: Current and Future Research Trends, 17(1), 1–8. Retrieved from