The Application of Vibrational Spectroscopy in the Analysis of Ultra-High Molecular Weight Polyethylene for Knee and Hip Prosthetics

Authors

  • Matic. J. Grdadolnik Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
  • Arne K. Marušič Faculty of Medicine, University of Maribor, Taborska ulica 8, SI-2000 Maribor, Slovenia
  • Monika Jenko Institute of Metals and Technology, Lepi pot 11, SI-1000 Ljubljana, Slovenia
  • Luka Snoj Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
  • Alenka Mozer Gimnazija Vič, Tržaška c. 72, SI-1000 Ljubljana, Sloveni
  • Drago Dolinar Dept. for Orthopedic Surgery, UMC Ljubljana, Zaloška 9, SI-1000 Ljubljana, Slovenia
  • Urban Nova National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia

Keywords:

UHMWPE, infrared spectroscopy, Raman spectroscopy, polymer crystallinity, cross-linking, oxidation

Abstract

We systematically used infrared (IR) and Raman spectroscopy to study the structure of unprocessed and perturbed UHMWPE by ?-irradiation. We tested the proposed methods on selected polymer samples with known structure. We used vibrational spectroscopy to analyse the chemical structure of two different types of UHMWPE with different molecular weight and density under the trade names GUR 1020 and GUR 1050. The samples were exposed to four different doses of g-irradiation, which induces the cross-linking and oxidation of polyethylene chains. The showed results proved that vibration spectroscopy can be a fast, efficient, non-destructive and simple tool to characterize the oxidation and degree of crystallinity of UHMWPE, while the accuracy of determining the degree of cross-linking was omitted by the process of oxidation and band overlapping.

References

. Costa, L.; Luda, M.P.; Trossarelli, L.; Brach del Prever, E.M.; Crova, M.; Gallinaro, P. In vivo UHMWPE biodegradation of retrieved prosthesis. Biomaterials 1998, 19, 1371-1385, doi:https://doi.org/10.1016/S0142-9612(98)00013-1.

. Suresh, B.; Maruthamuthu, S.; Kannan, M.; Chandramohan, A. Mechanical and surface properties of low-density polyethylene film modified by photo-oxidation. Polymer Journal 2011, 43, 398, doi:10.1038/pj.2010.147.

. Costa, L.; Jacobson, K.; Bracco, P.; Brach del Prever, E.M. Oxidation of orthopaedic UHMWPE. Biomaterials 2002, 23, 1613-1624, doi:https://doi.org/10.1016/S0142-9612(01)00288-5.

. Lewis, G. Properties of crosslinked ultra-high-molecular-weight polyethylene. Biomaterials 2001, 22, 371-401, doi:https://doi.org/10.1016/S0142-9612(00)00195-2.

. Illgen, R.L.; Forsythe, T.M.; Pike, J.W.; Laurent, M.P.; Blanchard, C.R. Highly Crosslinked vs Conventional Polyethylene Particles—An In Vitro Comparison of Biologic Activities. The Journal of Arthroplasty 2008, 23, 721-731, doi:https://doi.org/10.1016/j.arth.2007.05.043.

. Sato, H.; Shimoyama, M.; Kamiya, T.; Amari, T.; Šašic, S.; Ninomiy, a.T.; Siesler, H.W.; Ozaki, Y. Raman spectra of high?density, low?density, and linear low?density polyethylene pellets and prediction of their physical properties by multivariate data analysis. Journal of Applied Polymer Science 2002, 86, 443-448, doi:doi:10.1002/app.10999.

. Pagès P. Characterization of polymer materials using FT-IR and DSC techniques. In Therm. Analysis. Fundam. Appl. Material Charact.; Elsevier: Amsterdam, 2003.

. Jung, M.R.; Horgen, F.D.; Orski, S.V.; Rodriguez C, V.; Beers, K.L.; Balazs, G.H.; Jones, T.T.; Work, T.M.; Brignac, K.C.; Royer, S.-J.; et al. Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms. Marine Pollution Bulletin 2018, 127, 704-716, doi:https://doi.org/10.1016/j.marpolbul.2017.12.061.

. Krimm, S.; Ching, J.H.C. Infrared spectra of polyethylene-poly(ethylene-d4) Mixed crystal systems. Macromolecules 1971, 5, 209-211.

. Krimm, S.; Liang, C.Y.; Sutherland, G.B.B.M. Infrared spectra of high polymers. II. Polyethylene. J. Chem. Phys. 1955, 25, 549-562.

. Socrates, G. Infrared and Raman Characteristic Group Frequencies. Tables and Charts. 2001.

. Žagar, E.; Huski?, M.; Grdadolnik, J.; Žigon, M.; Zupan?i?-Valant, A. The Effect of Annealing on the Rheological andThermal Properties of Aliphatic Hyperbranched Polyester Based on 2,2-bis (Methylol) Propionic Acid. Macromolecules 2005, 38, 3933-3942.

. Žagar, E.; Grdadolnik, J. An Infrared Spectroscopic Study of H-Bond Network in Hyperbranched Polyester Polyol. J. Mol. Struct. 2003, 658, 143-152.

. Zhizhin, G.N.; Aleksanyan, V.T.; Sterin, K.E. Raman spectra of hydrocarbons; PERGAMON PRESS: Oxford, 1980.

. 15. Strobl, G.R.; Hagedorn, W. Raman spectroscopic method for determining the crystallinity of polyethylene. Journal of Polymer Science: Polymer Physics Edition 1978, 16, 1181-1193, doi:doi:10.1002/pol.1978.180160704.

. Zerbi, G.; Gallino, G.; Del Fanti, N.; Baini, L. Structural depth profiling in polyethylene films by multiple internal reflection infra-red spectroscopy. Polymer 1989, 30, 2324-2327, doi:https://doi.org/10.1016/0032-3861(89)90269-3.

. Gall, M.J.; Hendra, P.J.; Peacock, C.J.; Cudby, M.E.A.; Willis, H.A. The laser-Raman spectrum of polyethylene. The assignment of the spectrum to fundamental modes of vibration. Spectrochim. Acta A 1972, 28, 1485-1496.

. Furukawa, T.; Sato, H.; Kita, Y.; Matsukawa, K.; Yamaguchi, H.; Ochiai, S.; Siesler, H.; Ozaki, Y. Molecular structure, crystallinity and Morphology of polyethylene/polypropilene blends studied by Raman mapping scanning electron microscopy, wide anngle X-ray diffraction and differential scanning calorimetry. Polymer science 2006, 38, 1127-1136.

. Takahashi, Y.; Yamamoto, K.; Pezzotti, G. Effects of vitamin E blending on plastic deformation mechanisms of highly crosslinked ultrahigh molecular weight polyethylene (HXL-UHMWPE) in total hip arthroplasty. Acta Biomaterialia 2015, 15, 227-236, doi:https://doi.org/10.1016/j.actbio.2014.12.022.

. Bellare, A.; D'Angelo, F.; Ngo Hung, D.; Thornhill Thomas, S. Oxidation resistance and abrasive wear resistance of vitamin E stabilized radiation crosslinked ultra?high molecular weight polyethylene. Journal of Applied Polymer Science 2016, 133, doi:10.1002/app.44125.

. Reinitz, S.D.; Currier, B.H.; Levine, R.A.; Van Citters, D.W. Crosslink density, oxidation and chain scission in retrieved, highly cross-linked UHMWPE tibial bearings. Biomaterials 2014, 35, 4436-4440, doi:https://doi.org/10.1016/j.biomaterials.2014.02.019.

. Zhang, L.; Sawae, Y.; Yamaguchi, T.; Murakami, T.; Yang, H. Effect of radiation dose on depth-dependent oxidation and wear of shelf-aged gamma-irradiated ultra-high molecular weight polyethylene (UHMWPE). Tribology International 2015, 89, 78-85.

. Mirkin, N.G.; Krimm, S. Ab initio analysis of the vibrational spectra of conformers of some branched alkanes. Journal of Molecular Structure 2000, 550-551, 67-91, doi:https://doi.org/10.1016/S0022-2860(00)00513-5.

Downloads

Published

2022-07-30

How to Cite

Matic. J. Grdadolnik, Arne K. Marušič, Monika Jenko, Luka Snoj, Alenka Mozer, Drago Dolinar, & Urban Nova. (2022). The Application of Vibrational Spectroscopy in the Analysis of Ultra-High Molecular Weight Polyethylene for Knee and Hip Prosthetics. International Journal of Natural Sciences: Current and Future Research Trends, 14(1), 92–108. Retrieved from https://ijnscfrtjournal.isrra.org/index.php/Natural_Sciences_Journal/article/view/1114

Issue

Section

Articles