Dust Temperature and Emission of FirstLight Simulated Galaxies at Cosmic Dawn

Authors

  • Mushtaq Muzammil Heidelberg University, Zentrum für Astronomie, Albert-Ueberle-Strasse 2, 69120 Heidelberg, Germany
  • Hassan Puttasiddappa Prajwal Heidelberg University, Institut für Theoretische Physik, Philosophenweg 16, 69120 Heidelberg, Germany

Keywords:

FirstLight, POLARIS, dust temperature, high redshift galaxies

Abstract

We study the behavior of dust temperature and its infrared emission of FirstLight1 simulated galaxies at the redshift of 6 and 8, by using POLARIS2 as a Monte Carlo photon transport simulator. To calculate the dust temperature (Tdust) of the Interstellar medium (ISM) of galaxies, POLARIS requires three essential parameters as an input - (1) The physical characteristics of galaxies such as spatial distribution of stars and dust, which are taken from FirstLight galaxies. (2) The intrinsic properties of dust grains that are derived from the Discrete Dipole Approximation Code (DDSCAT) model. (3) The optical properties of star-particles that are in the form of their spectral energy distributions (SEDs) which are extracted from the Binary Population and Spectral Synthesis (BPASS) model. Our simulations produced the 3D maps of the equilibrium dust temperature along with the sight-line infrared emission maps of galaxies. Our results show the importance of excess heating of dust by the Cosmic Microwave Background (CMB) radiations at high redshifts that results in increased Mid and Far infrared (M-FIR) dust emission. The different evaluations of dust temperature models relate diversely to the optical and intrinsic properties of galaxies.

References

F. Bertoldi, “Dust emission from the most distant quasars.” Astronomy & Astrophysics, vol. 406, no. 3, 2003, doi: 10.1051/0004-6361:20030710.

M. Kriek and C. Conroy, “THE DUST ATTENUATION LAW IN DISTANT GALAXIES: EVIDENCE FOR VARIATION WITH SPECTRAL TYPE.” The Astrophysical Journal, vol. 775, no. 1, 2013, doi: 10.1088/2041-8205/775/1/l16.

S. Lower, D. Narayanan, J. Leja, B. D. Johnson, C. Conroy, and R. Davé, “How Well Can We Measure the Stellar Mass of a Galaxy: The Impact of the Assumed Star Formation History Model in SED Fitting.” The Astrophysical Journal, vol. 904, no. 1, p. 33, 2020, doi: 10.3847/1538-4357/abbfa7.

N. Scoville, “ISM MASSES AND THE STAR FORMATION LAW ATZ= 1 TO 6: ALMA OBSERVATIONS OF DUST CONTINUUM IN 145 GALAXIES IN THE COSMOS SURVEY FIELD.” The Astrophysical Journal, vol. 820, no. 2, p. 83, 2016, doi: 10.3847/0004-637x/820/2/83.

C. Schreiber, D. Elbaz, M. Pannella, L. Ciesla, T. Wang, and M. Franco, “Dust temperature and mid-to-total infrared color distributions for star-forming galaxies at 0 < z < 4.” Astronomy & Astrophysics, vol. 609, 2017, doi: 10.1051/0004-6361/201731506.

A. V. Kravtsov, A. A. Klypin, and A. M. Khokhlov, “Adaptive Refinement Tree: A New High?ResolutionN?Body Code for Cosmological Simulations.” The Astrophysical Journal Supplement Series, vol. 111, no. 1, pp. 73-94, 1997, doi: 10.1086/313015.

A. V. Kravtsov, “On the Origin of the Global Schmidt Law of Star Formation.” The Astrophysical Journal, vol. 590, no. 1, 2003, doi: 10.1086/376674.

D. Ceverino, “Radiative feedback and the low efficiency of galaxy formation in low-mass haloes at high redshift.” Monthly Notices of the Royal Astronomical Society, vol. 442, no. 2, pp. 1545-1559, 2014, doi: 10.1093/mnras/stu956.

D. Ceverino, S. C. O. Glover, and R. S. Klessen, “Introducing the FirstLight project: UV luminosity function and scaling relations of primeval galaxies.” Monthly Notices of the Royal Astronomical Society, vol. 470, no. 3, pp. 2791-2798, 2017, doi: 10.1093/mnras/stx1386.

D. Ceverino, R. S. Klessen, and S. C. O. Glover, “FirstLight II: Star formation rates of primeval galaxies from z=5-15.” Monthly Notices of the Royal Astronomical Society, 2018, doi: 10.1093/mnras/sty2124.

D. Ceverino, R. S. Klessen, and S. C. O. Glover, “FirstLight III: rest-frame UV-optical spectral energy distributions of simulated galaxies at cosmic dawn.” Monthly Notices of the Royal Astronomical Society, vol. 484, no. 1, pp. 1366-1377, 2019, doi: 10.1093/mnras/stz079.

D. Narayanan, “The formation of submillimetre-bright galaxies from gas infall over a billion years.” Nature, vol. 525, no. 7570, pp. 496-499, 2015, doi: 10.1038/nature15383.

P. Camps, J. W. Trayford, M. Baes, T. Theuns, M. Schaller, and J. Schaye, “Far-infrared and dust properties of present-day galaxies in the EAGLE simulations.” Monthly Notices of the Royal Astronomical Society, vol. 462, no. 1, pp. 1057-1075, 2016, doi: 10.1093/mnras/stw1735.

L. Liang, “Submillimetre flux as a probe of molecular ISM mass in high-z galaxies.” Monthly Notices of the Royal Astronomical Society: Letters, vol. 478, no. 1, 2018, doi: 10.1093/mnrasl/sly071.

X. Ma, “Dust attenuation, dust emission, and dust temperature in galaxies at z ? 5: a view from the FIRE-2 simulations.” Monthly Notices of the Royal Astronomical Society, vol. 487, no. 2, pp. 1844-1864, 2019, doi: 10.1093/mnras/stz1324.

H. Trac and R. Cen, “Radiative Transfer Simulations of Cosmic Reionization. I. Methodology and Initial Results.” The Astrophysical Journal, vol. 671, no. 1, pp. 1-13, 2007, doi: 10.1086/522566.

“BPASS - Binary Population and Spectral Synthesis - Home.” https://bpass.auckland.ac.nz/ (accessed: Jul. 22, 2022).

J. S. Mathis, W. Rumpl, and K. H. Nordsieck, “The size distribution of interstellar grains.” The Astrophysical Journal, vol. 217, p. 425, 1977, doi: 10.1086/155591.

J. Weingartner and B. Draine, “Dust Grain–Size Distributions and Extinction in the Milky Way, Large Magellanic Cloud, and Small Magellanic Cloud.” The Astrophysical Journal, vol. 548, no. 1, pp. 296-309, 2001, doi: 10.1086/318651.

“DDSCAT: The discrete dipole approximation for. - ASCL.net.” http://ascl.net/0008.001 (accessed: Jul. 22, 2022).

L. B. Lucy. “Computing radiative equilibria with Monte Carlo techniques”.In: 344 (Apr. 1999), pp. 282–288.

J. E. Bjorkman and K. Wood, “Radiative Equilibrium and Temperature Correction in Monte Carlo Radiation Transfer.” The Astrophysical Journal, vol. 554, no. 1, pp. 615-623, 2001, doi: 10.1086/321336.

S. Reissl, S. Wolf, and R. Brauer, “Radiative transfer with POLARIS.” Astronomy & Astrophysics, vol. 593, 2016, doi: 10.1051/0004-6361/201424930.

E. Da Cunha, “ON THE EFFECT OF THE COSMIC MICROWAVE BACKGROUND IN HIGH-REDSHIFT (SUB-)MILLIMETER OBSERVATIONS.” The Astrophysical Journal, vol. 766, no. 1, p. 13, 2013, doi: 10.1088/0004-637x/766/1/13.

L. Byrne, C. Christensen, M. Tsekitsidis, A. Brooks, and T. Quinn, “Implementing Dust Shielding as a Criteria for Star Formation.” The Astrophysical Journal, vol. 871, no. 2, p. 213, 2019, doi: 10.3847/1538-4357/aaf9aa.

N. Z. Scoville, “Evolution of star formation and gas.” Secular Evolution of Galaxies, pp. 491-554, 2013, doi: 10.1017/cbo9781139547420.010.

L. Liang, “On the dust temperatures of high-redshift galaxies.” Monthly Notices of the Royal Astronomical Society, vol. 489, no. 1, pp. 1397-1422, 2019, doi: 10.1093/mnras/stz2134.

X. Ma, “Dust attenuation, dust emission, and dust temperature in galaxies at z ? 5: a view from the FIRE-2 simulations.” Monthly Notices of the Royal Astronomical Society, vol. 487, no. 2, pp. 1844-1864, 2019, doi: 10.1093/mnras/stz1324.

C. Behrens, A. Pallottini, A. Ferrara, S. Gallerani, and L. Vallini, “Dusty galaxies in the Epoch of Reionization: simulations.” Monthly Notices of the Royal Astronomical Society, vol. 477, no. 1, pp. 552-565, 2018, doi: 10.1093/mnras/sty552.

C. M. Casey, “Far-infrared spectral energy distribution fitting for galaxies near and far.” Monthly Notices of the Royal Astronomical Society, vol. 425, no. 4, pp. 3094-3103, 2012, doi: 10.1111/j.1365-2966.2012.21455.x.

C. J. Willott, C. L. Carilli, J. Wagg, and R. Wang, “STAR FORMATION AND THE INTERSTELLAR MEDIUM INz>6 UV-LUMINOUS LYMAN-BREAK GALAXIES.” The Astrophysical Journal, vol. 807, no. 2, p. 180, 2015, doi: 10.1088/0004-637x/807/2/180.

N. Laporte, “Dust in the Reionization Era: ALMA Observations of a z = 8.38 Gravitationally Lensed Galaxy.” The Astrophysical Journal, vol. 837, no. 2, 2017, doi: 10.3847/2041-8213/aa62aa.

Y. Sugahara, “Big Three Dragons: A [N ii] 122 ?m Constraint and New Dust-continuum Detection of a z = 7.15 Bright Lyman-break Galaxy with ALMA.” The Astrophysical Journal, vol. 923, no. 1, p. 5, 2021, doi: 10.3847/1538-4357/ac2a36.

I. Langan, D. Ceverino, and K. Finlator, “Weak evolution of the mass–metallicity relation at cosmic dawn in the FirstLight simulations.” Monthly Notices of the Royal Astronomical Society, vol. 494, no. 2, pp. 1988-1993, 2020, doi: 10.1093/mnras/staa880.

D. Utomo, I.-D. Chiang, A. K. Leroy, K. M. Sandstrom, and J. Chastenet, “The resolved distributions of dust mass and temperature in Local Group Galaxies,” The Astrophysical Journal, vol. 874, no. 2, p. 141, 2019.

G. Popping, R. S. Somerville, and M. Galametz, “The dust content of galaxies from z = 0 to z = 9.” Monthly Notices of the Royal Astronomical Society, vol. 471, no. 3, pp. 3152-3185, 2017, doi: 10.1093/mnras/stx1545.

Downloads

Published

2022-08-14

How to Cite

Mushtaq Muzammil, & Hassan Puttasiddappa Prajwal. (2022). Dust Temperature and Emission of FirstLight Simulated Galaxies at Cosmic Dawn. International Journal of Natural Sciences: Current and Future Research Trends, 14(1), 109–125. Retrieved from https://ijnscfrtjournal.isrra.org/index.php/Natural_Sciences_Journal/article/view/1121

Issue

Section

Articles