

30

International Journal of Natural Sciences: Current and Future Research Trends

(IJNSCFRT)
ISSN (Print) , ISSN (Online)

© International Scientific Research and Researchers Association

https://ijnscfrtjournal.isrra.org/index.php/Natural_Sciences_Journal/index

Differences Between Service-Oriented Architecture and

Microservices Architecture

Lendina Rushani
a
*, Festim Halili

b

a
University of Tetova, Faculty of Natural Sciences and Mathematics, Department of Informatics, Tetovo, 1200,

North Macedonia

b
University of Tetova, Faculty of Natural Sciences and Mathematics, Department of Informatics,Tetovo, 1200,

North Macedonia

a
Email: l.rushani3202022@unite.edu.mk ,

b
Email: festim.halili@unite.edu.mk

Abstract

Over decades the industry demands different changes on software design and architecture. The increasing

complexity of applications, changes of requirements and several other evolutions caused an industrial shift of

architectures. In the past, architectures like CORBA, Java RMI and SOA ensured an answer to the above

mentioned problems, however now it seems that even SOA has its successor, the microservices architecture.

After analyzing and reading this paper, the readers will be familiar and have solid information about service-

oriented architecture, microservices, their differences and similarities, challenges, advantages and disadvantages

and their implementation.

Keywords: services; architectures; microservices; SOA; service characteristics; architecture characteristics.

1. Introduction

With the increased complexity and the need for potent applications, the monolithic architecture is no longer the

best choice because it affects the performance and how the application responds to changes. To deal with the

limitations of the monolithic architecture, developers have adopted the single responsibility principle which

says: gather together those things that can change for the same reasons and separate those things that can change

for different reasons. For this reason, service-oriented architecture and microservices architecture began to be

used by enabling developers to build applications that consist of services that run in their own environment but

are independently deployable. The usage of service-oriented architecture started to increase on the mid 2000’s

by taking over the information technology industry. A big number of companies started adopting this new

architecture style with the purpose of bringing better functionality reuse to the organization and to secure a

better communication between companies among each other and among their customers.

--

* Corresponding author.

https://ijnscfrtjournal.isrra.org/index.php/Natural_Sciences_Journal/index

International Journal of Natural Sciences: Current and Future Research Trends (IJNSCFRT) (2022) Volume 13, No 1, pp 30-48

31

Also, there appeared several practices in order to implement this architecture. Unfortunately, companies learned

the hard way that SOA was a big, expensive and complicated architecture that takes a long time to design and

implement which often results in failed projects. This was the reason why the usage of SOA started decreasing.

Today, microservices architecture is taking over the information technology industry by being able to address

problems that are related to big monolithic applications and by developing highly scalable and modular

applications. Both SOA and microservices suggest decomposing the system into services that are available over

a network and can be integrated across heterogeneous platforms. In both approaches, services work together and

share the same goal about the functionality of the overall system but the path to achieve that goal is different [1].

Even though SOA and MSA are both considered service-based architectures, which means that they are

architectural patterns that rely on services as the primary architecture component that is used to perform

business and non-business functionality; they differ from each other but also share many similar characteristics

[2]. Creating a new product is very risky and choosing the right architecture ensures an essential step towards

success. The architecture should be chosen by the developers based on the characteristics and objectives of the

product that is being developed. In general, the architecture depends on how large and diverse the product that

you are developing is. If you are working on more diverse and larger projects, then it is suggested to work with

the SOA approach because it supports integration between heterogeneous applications and messaging protocols

via an enterprise-service bus (ESB). Meanwhile, small environments e.g. web and mobile applications do not

need a very potent communication layer and can be developed with the microservices architecture [3].

2. Service based architecture

All service-based architectures are generally distributed architectures, namely the service components can be

accessed remotely through some sort of remote-access protocols such as Simple Object Access Protocol

(SOAP), Remote Method Invocation (RMI), Microsoft Message Queuing (MSMQ), Java Message Service

(JMS), Representational State Transfer (REST) and .NET Remoting. Distributed architectures enable more

advantages over monolithic and layered-based architectures. These advantages include: separation of

components, better scalability and better control of development, testing and deployment; another advantage of

distributed architecture is that they enable the development of more loosely coupled and modular applications.

The components of a distributed architecture allow better change control and easier maintenance, which leads to

more responsive and potent applications. On service-based architecture we often come across the term

modularity. Modularity refers the practice of encapsulating components of the application into self-contained

services that can be designed, developed, tested and deployed while being independent from other components

and services of the applications. Modular architectures also prefer and support rewriting over maintenance; this

allows refactoring and replacing the architectures into smaller pieces as the business grows and gets more

complex. Apart from advantages, distributed architectures have disadvantages too. The main disadvantage of

distributed architecture is the complexity and cost. Complexity includes maintaining service contracts,

maintaining unresponsive or unavailable services, choosing the right remote-access protocol, securing remote

services and managing distributed transactions [4].

International Journal of Natural Sciences: Current and Future Research Trends (IJNSCFRT) (2022) Volume 13, No 1, pp 30-48

32

2.1 Service contracts

Service contracts are agreements between a customer or client and a person or company who will provide

services; it is an agreement between a service and a service customer. These contracts specify the inbound and

outbound data along with the contract format. Service contracts are a very essential part of service-based

architectures that should be treated with a special attention. Creating and maintaining a service contract is a

difficult task that should be treated with seriousness because they define important characteristics such as:

information about both parties, outline of service and work, timeline of services, defaults terms, warranties and

much more [5]. In service-based architectures there are two types of service contract models:

 Service-based contracts

 Consumer-driven contracts

The difference between service-based and consumer-driven contracts is the degree of collaboration. On service-

based contracts the only owner of the contract is the service. The service is able to evolve and change the contract

without considering the other party (the service consumer). With this model the service customers are forced to

adopt new service contract changes whether or not they need or want these changes.

On the other hand, consumer-driven contracts work on a closer relationship between the service and its

consumers. On this service model, the service and consumers collaborate together so that the needs of consumers

are taken into account while creating service contracts. Generally, it is required that the service knows who its

consumers are and how the service is used by every consumer. The service consumers have the opportunity to

suggest service contract changes, which may be rejected or adapted by the service. The ideal form of creating

consumer-driven contracts is: if a service consumer wants a change he delivers tests that suggest that change to

the service owner. The service owner then executes those tests to see if the change breaks another’s service

consumers. If the change and has no effect on other consumers then it is accepted, in opposite it is rejected.

Another important element of service contracts is the contract versioning. Contract versioning is important

because at some point in the future the contract might change, for this reason it should be planed from the very

beginning of the development process because even if you think that you will not need it – eventually you will.

The degree of changes is very dependable on how they will affect each service consumer and the compatibility

supported by the service about contract changes. With contract versioning we are able to roll out new features

that include contract changes, and at the same time we are able to provide compatibility for the consumers that

still use previous contracts. Contract versioning is performed with the help of strategies. Several open source and

commercial frameworks can help on managing and implementing those strategies. Strategies are implemented

with the help of techniques. There are two basic techniques for implementing your own custom contract-version

strategy:

 Homogeneous versioning – involves the usage of contract version numbers in the same service contracts. An

example of this technique is the XML-based contract that represents an order for some goods with a contract

version number 1.0. If a newer version 1.1 that contains an additional field that provides delivery instructions in

International Journal of Natural Sciences: Current and Future Research Trends (IJNSCFRT) (2022) Volume 13, No 1, pp 30-48

33

the event where customer is not at home when the order is delivered is released, then the original contract

(version 1.0) can remain backward compatible by making the new delivery instructions field optional.

 Heterogeneous versioning – This technique supports multiple types of contracts and is closer to the consumer-

driven contracts. On homogeneous contracting as new features are introduced, there are introduced new contracts

that support those new features.

The main goal of contract versioning is to provide backward compatibility. Also, maintaining a mindset that

services must support multiple versions of a contract allows the team to quickly deploy new features and other

changes without the fear of breaking the existing contracts with other service consumers.

2.2. Service availability

Availability and responsiveness of a service are two elements that are common to all service-based

architectures. Both of these elements relate with the ability of the service consumer to communicate with a

remote service, but they have slightly different meanings and are addressed by consumers in different ways. The

availability refers to the ability of a remote service to accept requests in a timely manner, while the

responsiveness refers to the ability of the service consumer to receive a timely response from the service. The

way you handle errors about availability and responsiveness are different; since service availability is related to

service connectivity, there is not much a service consumer can do except to retry the connection for a set

number of times or queue the request for later processing if possible. On the other hand, responsiveness is much

more difficult to address because once you successfully send a request to a service, you have to give an answer

for the questions: how long should you wait for a response, is the service slow or did something happen in the

service which prevents the response from being sent?

2.3. Service availability

Knowing that services are accessed remotely in service-based architectures, it is essential to be sure that the

service consumer is allowed to have access to a particular service. Depending on the service that the consumer

wants to access, authentication and authorization might be needed. With authentication it is decided whether the

service consumer can connect to the service through sign-in credentials using a username and a password.

Sometimes authentication is not the best solution because the fact that service consumers can connect to a

service does not mean that they can access all the features in that service. Authorization refers to whether or not

a service consumer is allowed to access specific business features within a service.

3. Service-oriented architecture

Since services are the basic building blocks of service-oriented architecture, firstly we have to understand the

services in order to understand the architecture better. Services have existed since the civilization itself; in fact

any person that is performing a task in support for others is providing a service. Any group of individuals

collectively performing a task in support of a larger task also delivers a service. A service is a self-contained unit

of software that is able to perform a specific task through a published API and it is part of a service contract. A

service has three components: an interface - that defines how a service provider will perform requests from a

International Journal of Natural Sciences: Current and Future Research Trends (IJNSCFRT) (2022) Volume 13, No 1, pp 30-48

34

service consumer, a contract – that defines how the service provider and the service consumer interact, and the

implementation – that is the actual service code itself [6]. The interface and the implementation of a service are

separated from each other, for this reason a service provider can execute a request without knowing how the

service performs; the service consumer only worries about consuming the service. Services are reusable

(reusability depends on how the services are designed), stateless, non-context specific and can be dynamically

discovered across the system, enterprise or in the cloud. These characteristics enables services to be loosely

coupled which results in new applications. Services can be created by writing code or they can be derived from

existing IT assets. An important characteristic of services is granularity. A coarse-grained service includes more

functionality than a fine-grained service which includes less functionality. The granularity of one service depends

on its purposes and a poorly grained service will result in low reuse possibilities. In a service-oriented

architecture, services can be combined with other services of the network with the help of service orchestration.

Service orchestration helps on creating higher-level composite services and applications. The services of SOA are

divided into two categories: Business Services and Infrastructure Services.

Business Services also known as Application Services are services that perform specific business functions and

are required for successfully completing a business process. These services can be used for developing composite

services and business applications that automate business processes. Business Services can be categorized in:

 Entity Services – are data-centric components of the enterprise system. Entity Services are responsible for

exposing the information stored in databases.

 Capability Services– are action-centric components that implement business capabilities. Capability Services

are coarse-grained and provide generic business capabilities.

 Activity Services – just like capability services are action-centric components that implement business

capabilities. Unlike capability services, they are fine-grained and provide more specific business capability.

 Process Services – they enable integrating entity, capability and activity services through service orchestration

with the purpose of creating composite business services. Also, process services contain the business logic.

Infrastructure Services secure the technical functionality that is required for business implementation in service-

oriented architecture, but they do not add any business value. Infrastructure services are part of centrally

managed infrastructure components such as Enterprise Service Bus. These services can be categorized in:

 Communication Services – have the responsibility to transport messages both within and without the enterprise.

 Utility Services – provide other technical capabilities that are not related to message transfer.

For programming and building services you can use different implementation technologies, but the two common

implementation mediums are SOAP-based Web services and RESTful services. The conflict between what

businesses really needed and what IT industry delivered continued to exist until the model and processes were

transformed into a new paradigm. That paradigm was Service-Oriented Architecture. Today, business leaders and

IT together determine how the business should operate and work to make it a reality with the help of SOA; they

also determine a strategy that both liberates the business from IT and allows IT to create maintainable, extensible

and compliant systems. Service-oriented architecture does not have a single definition, but it is efined in several

International Journal of Natural Sciences: Current and Future Research Trends (IJNSCFRT) (2022) Volume 13, No 1, pp 30-48

35

ways. For example; The Open Group defines it as an architectural style that supports service orientation, OASIS

defines it as a paradigm for organizing and utilizing distributed capabilities that are under the control of different

ownership domains, The Object Management Group defines it as an architectural style for a community of

providers and consumers of services with the purpose of achieving mutual value, and IBM defines it as a style of

architecture that treats software components as a set of services [7].

A design paradigm is an approach for designing solution logic. While building distributed solution logic the

design approach focuses on the “separation of concerns” theory. This theory states that a larger problem is more

effectively solved when decomposed into a set of smaller problems or concerns. This gives you the option of

partitioning solution logic into capabilities, each of which is designed to solve an individual concern. Related

capabilities can be grouped into units of solution logic. There are different design paradigms. What distinguishes

SOA from other paradigms is the manner which it carries out the separation of concerns and how it shapes the

individual units of solution logic with specific characteristics [8]. Service-oriented architecture is an

architectural design pattern that is based on separate pieces of software that provide functionality as services to

other applications through protocols. It is a collection of services that communicate with each other; this

communication can include transferring simple data or coordinating services to achieve an activity. With the

help of SOA principles and methodologies you can design and develop a software product in the form of

interoperable services. These services are well-defined functionalities that are built as software components

which can be reused and distributed for different purposes. The SOA approach enables building IT systems that

allow businesses to increase existing assets and manage the inevitable changes required to support the business

[9]. One of the most important aspects of SOA is that it is a business approach and methodology as much as it is

a technological aproach and methodology. This means that SOA enables businesses to take business decisions

that are supported by technology, instead of taking business decisions that are determined by technology. One of

the most important characteristics of SOA is that you do not “throw away” the software assets or components

that you use everyday, but they are designed on a form that will allow you to use them, reuse them and keep

reusing them. In fact, SOA extends the idea of reuse not only to web services but also to business services. SOA

is a form that enables the business to move, change, partner and reinvent itself easily. That form is achieved

with the help of standarts; specifically, using industry standard interfaces and creating business services without

any dependency that will allow the business to be more flexible, to change its business model and to

reorchestrate itself.

3.1 Delivering a SOA – Framework and Strategies

Many of SOA definitions indicate that the arrangement and relationship between services and modules should

be loosely coupled rather than tightly coupled because this will allow easier change and customization of

services based on needs and requests; the disadvantage is that this leads towards a plethora of definitions and

approaches to SOA implementation. For this reason, there appears the need for a framework. We need a

unifying model and framework for building applications based on SOA where multiple services will be able to

interact with each other or a business application will reuse some of the services. A framework should include

metadata that describe various important features of SOA, how these features can be arranged, the libraries and

locations of services, service contracts and the service provider – whether internal or external. An SOAIF is a

International Journal of Natural Sciences: Current and Future Research Trends (IJNSCFRT) (2022) Volume 13, No 1, pp 30-48

36

general-purpose infrastructure platform that enables developers and business analysts to create, deploy, manage,

and change processes within and across the enterprise. SOAIFs have unique requirements at both the tools and

infrastructure levels that are not typically provided by any single current technology or platform. A SOAIF

focuses on internal and cross-enterprise processes, helps organizations for streamlining operations, reduces costs

and increases responsiveness. Specifically, it provides general-purpose, service-based distributed capabilities

that deliver operational efficiencies, easier application development and deployment, less expensive application

integration and faster response to changing business requirements.

For delivering SOA projects you have to pass through a few phases that are included in the lifecycle of a SOA

delivery project. The lifecycle is simply compromised of a series of steps that have to be completed to construct

the services for a service-oriented solution.

Figure 1: Phases of a SOA delivery lifecycle

 Service-oriented analysis – it is the initial stage of the delivery lifecycle where we determine the potential

scope of our SOA. On this phase we map the service layers and model the individual services as service

candidates that compromise a preliminary SOA [10].

 Service-oriented design – after deciding about what we will build, we have to determine how it should be

built. The second phase on the lifecycle is a heavily standards-driven phase that incorporates industry

conventions and service-oriented principles into the service designing process. On this phase the service

designers have to establish the hard logic boundaries that are encapsulated by services.

 Service development – this is the building or construction phase. On this phase you have to choose the

programming language and development environment that will determine the physical form of services and

orchestrated business processes in accordance with their design.

 Service testing – as we mentioned above, services can be reused and composed in unforeseeable situations,

that is why they have to be tested prior to deployment.

 Service deployment – on this stage you install and configure distributed components, service interfaces and

any associated middleware products onto production servers.

 Service administration - the last phase takes place after the services are deployed. On this phase you take care

of application management issues, and have to find answers about several question e.g. how will the service

usage be monitored, how will the messages be traced and managed, how will performance errors be detected.

International Journal of Natural Sciences: Current and Future Research Trends (IJNSCFRT) (2022) Volume 13, No 1, pp 30-48

37

After building the individual services you have to organize them in a way that will: accommodate the

preferences referring to which types of service layers we want to deliver, support a transition toward a

standardized SOA that fulfills the requirements and coordinate the delivery of the application, business and

process services. We know that the success of a service-oriented solution is determined by the fulfillment of the

expected requirements within a given budget and deadline. To reach the wanted expectations we have to choose

a strategy that will be based on the organization’s priorities to establish the correct balance between the long-

term migration goals and the fulfillment of short-term requirements. There are three strategies that help us on

reaching the expectations in different manners:

 Top-down strategy – this strategy demands more of an initial investment because it introduces an upfront

analysis stage focused on the creation of the service inventory blueprint. This strategy encourages the creation

of an organization’s existing building logic and requires all the business processes to become service-oriented.

With the help of top-down strategy we are able to create numerous reusable business and application services.

Top-down strategy is achieved by completing these steps: defining relevant ontology, aligning relevant

ontology, performing service-oriented analysis, performing service-oriented design, developing services,

testing services and deploying services.

 Bottom-up strategy – is focused on the fulfillment of immediate business requirements and the prime

objective of the project. On this strategy the services are built and modeled to encapsulate application logic to

serve the immediate requirements of the solution. This strategy avoids the extra cost, effort and time required

to deliver services, has shorter lifespan and requires more frequent maintenance. Bottom-up strategy is

achieved by completing these steps: modeling application services, designing application services, developing

application services, testing services and deploying services.

 Agile (meet-in-the-middle) strategy – the challenge of this strategy is to find balance on incorporating service-

oriented design principles into business analysis environments without having to wait before integrating web

services technologies into technical environments. To achieve this objective we have to define a new process

that allows the business-level analysis to occur concurrently with service design and development. Agile

strategy is more complex that the previous two strategies because it needs to fulfill two opposing sets of

requirements [11].

3.2 SOA Advantages

SOA offers the following advantages:

 Flexibility, ease of access and increased customer satisfaction.

 Loosely coupled applications and location transparency – it allows enterprises to easily add new services and

upgrade the existing services.

 Seamless connectivity of applications and interoperability – this gives you the opportunity to increase

business agility and to respond on demand.

 Alignment of IT around the needs of business – IT is considered the technology that provides value to

business operations.

 Reuse of existing assets and applications – this helps on reducing costs, reducing development time and

International Journal of Natural Sciences: Current and Future Research Trends (IJNSCFRT) (2022) Volume 13, No 1, pp 30-48

38

reducing time to market.

 Better scalability and graceful evolutionary changes - this is enabled due to the reusability of services and

their ability to develop applications independently and in parallel [12].

3.3 SOA Disadvatages

Despite the advantages, SOA has the following disadvantages:

 Complexity – in SOA, the interactions between objects and services are often rich and complex.

 Connectivity – a majority of distributed architectures do not work over wide-area and intermitten networks.

 Evolutionary development - building and updating services is fine. However, if applications continually

require additional functionality and these requests are granted, the entire system may become unstable.

 Since services can invoke other services, each service needs to validate completely every input parameter.

This has negative implications by way of response time and overall machine load.

 A bug or corruption introduced in a well-used service takes out the entire system, not just a single application.

4. Microservices architecture

For years we have been trying to find better ways for building systems by learning from what has come before, by

adopting new technologies and by observing how technology companies operate with the purpose of creating IT

systems that make both their customers and developers happy. Thanks to their modularity and flexibility that is

offered to both development and operational team, microservices have gained a lot of attention in the IT industry.

In the past, applications were generally developed with monolithic approaches. On monolithic approaches one

code-base is used to run an entire application; this is less complicated than distributed approaches but running

these applications is very challenging. Monolithic applications were difficult to change because of the high

coupling nature and larger size. These obstacles created the need to search new developing approaches.

Microservices are one of the solutions that help on solving the above-mentioned issues. Microservices have

become popular in the last years along with the spread of DevOps practices and technologies like Kubernetes or

Docker. The usage of microservice architecture has increased especially after 2014 and this can be verified by

observing the industry where we conclude that microservices have been far superior when compared to other

models. Microservice architecture is a style of engineering highly automated and evolvable software systems

made up of capability-aligned microservies [13]. Microservices are a set of services that are designed to work

together with the purpose of forming an application. On microservices each service is built to execute a single

task [14]. Netflix, Amazon, The Guardian, LinkedIn and other well-known companies have evolved their

applications towards a microservice architecture because it reduces the needed time for putting a new feature in

operation. Big companies like the above-mentioned prefer this architectural style because they are more interested

in improving the ability to change rather than finding a universal pattern or process. Microservice architectural

style is defined as an approach for developing a single application as a set of small services, each running in its

own process and communicating with the help of standardized interfaces and protocols. MSA focuses on specific

aspects e.g. componentization of small lightweight services, agile applications, usage of infrastructure automation

with continuous delivery features, decentralized data management and decentralized governance among services

International Journal of Natural Sciences: Current and Future Research Trends (IJNSCFRT) (2022) Volume 13, No 1, pp 30-48

39

[15]. The main purpose of microservices is to use autonomous units that are isolated from each other and

coordinate them into a distributed infrastructure with the help of a lightweight container technology. The isolation

of units and business functionalities while using microservices is very important because it enables independence

during the development and deployment of each microservice, and it also optimizes their autonomy and ability to

replace. Usually the adoption of this architectural style relies in adopting agile practices and this reduces the time

between implementing a change in the system and transferring this change to the production environment. The

small size of microservices makes the process of deployment and replacement much easier; in fact the smaller the

service the more you maximize the benefits and downsides of microservice architecture. This allows companies

to accomplish tasks that would have been very difficult or even impossible with the monolithic approach; for

example a single service with a higher traffic can be scaled while the rest of services are left at the same size, this

will help the businesses on reducing the cost of running services. On MSA we focus our service boundaries on

business boundaries by making it obvious where code lives for a given piece of functionality. Also by keeping the

service focused on the set boundaries we avoid the temptation for it to grow too large and all the difficulties that

come with it. Services communicate with each other via network calls to enforce separation between services and

to avoid the risks of tight coupling. They need to be able to change independently of each other, and be deployed

without requiring consumers to change. In fact, while developing applications with MSA you have to be careful

while deciding what will the services expose and what should they hide. This is important because if there is too

much sharing then your consuming services will become coupled to the internal representations which will cause

autonomy decrease and will require more cooperation with consumers while making changes.

Main concepts and principles of microservices are: Microservices are ideal for big systems – microservices are

designed to solve problems of big systems. Size is a relative measure and it is not easy to quantify the

difference between small, normal and big system. In fact the developers were not concerned about the size of

the system but they were worried about what would happen on the situations where the system was too big. The

developers identified that the systems grow in size despite the boundaries that we initially define. Shortly, new

problems appear due to system scale and microservice architecture helps on solving these problems.

Microservice architecture is goal oriented – microservices focus on a goal rather than a solution. The purpose of

microservice architecture is to try and reach a goal with the help of a particular approach. There may be a set of

common characteristics that derive from this architectural style, but the focus of all these characteristics is to

solve problems and achieve wanted goals.

Microservices focus on replaceability – the ability to replace is the main advantage of microservices. The idea of

replacing a component rather than maintaining existing components is what makes this architectural style

special.

While developing applications with the microservices architecture you are free to use different technologies.

This will allow you to pick the right tool for each service and not use a more standardized, one-size-fits-all

approach that often might end up being a failure. If one part of the system needs to improve its performance,

you are free to use a different technology that is better able to achieve the required performance level. With

microservices, you are also able to adopt the technology more quickly and to understand how new

International Journal of Natural Sciences: Current and Future Research Trends (IJNSCFRT) (2022) Volume 13, No 1, pp 30-48

40

advancements may help you. One of the biggest barriers on trying out and adopting new technology is the risks

associated with it. Within a monolithic application, if you want to try a new programming language, database, or

framework, any change will impact a large amount of your system. With a system that is made of multiple

services, you have multiple places where you can try out a new piece of technology [16].

4.1 Designing Microservices Systems

While developing applications in the microservices style you will need to conceptualize the design as much

more than isolated individual design; which means that thinking in services term it is not enough because you

have to consider how all aspects of the system can work together in order to create an emergent behavior.

Emergent behaviors are the ones that are greater than the sum of their parts and for a microservices application

this includes the runtime behavior that emerges when we connect individual services together and the

organizational behavior that gets you there. A microservices system includes all of the elements about your

organization that are related to the application e.g. the structure of your organization, the people who work there,

the way they work and the outputs they produce are all important system factors. Equally important are runtime

architectural elements such as service coordination, error handling, and operational practices. There is the

additional challenge that all of these elements are interconnected— a change to one part of the system can have

an unforeseen impact on another part. For example, a change to the size of an implementation team can have a

profound impact on the work that the implementation team produces. From what we mentioned you can

conclude that all the interconnected parts make the system very complex and it is difficult to predict the results

that derive from a change on the system. For this reason scientists have developed a model. This model allows

them to understand the system more accurately and to predict the behavior of a system. A microservices design

model consists of five elements:

Figure 2: Microservice system design model

Service - exposes an application programming interface (API) and services collaborate with the help of those

APIs. Implementing well-designed microservices and APIs are essential to a microservice architecture. If you

can get the design, scope, and granularity of your service just right, you will be able to induce complex behavior

from a set of components that are simple.

Solution – solution architecture is derived from the individual service design elements because it represents a

International Journal of Natural Sciences: Current and Future Research Trends (IJNSCFRT) (2022) Volume 13, No 1, pp 30-48

41

macro view of your solution. When designing a particular microservice your decisions are bounded by the need

of producing a single output—the service itself. So, when designing a solution architecture your decisions are

bounded by the need of coordinating all the inputs and outputs of multiple services.

Process and tools - The system behavior is also a result of the processes and tools that workers in the system use

to do their job. In the microservices system this usually includes tooling and processes related to software

development, code deployment, maintenance, and product management. Choosing the right processes and tools

is an important factor in producing good microservice system behavior. For example, adopting standardized

processes like DevOps and Agile or tools like Docker containers can increase the changeability of your system.

Organization – how we work and how we communicate is also important. Organizational design includes the

structure, direction of authority, granularity and composition of teams. Many of the companies that have had

success with microservices architecture highlight their organizational design as a key ingredient.

Culture - is perhaps the most intangible yet may also be the most important. We can define culture as a set of

values, beliefs, or ideals that are shared by all of the workers within an organization. Organizational culture is

important because it shapes all of the atomic decisions that people within the system will make. Culture is a

context-sensitive feature of your system. What works in Japan may not work in the United States and what

works in a large insurance firm may not work at an e-commerce company. Also, culture is difficult to measure.

There exist surveys and models for measurement but many businesses evaluate the culture in a more instinctual

way via daily interactions with team members, team product and customers.

When put together all of these design elements form the microservices system. They are connected with each

other and a change to one element can have a meaningful and sometimes unpredictable impact on other

elements.

4.2 Microservices architecture advantages

Microservices architecture offers the following advantages:

 Faster release of functionality - this is enabled because it is not needed to wait until it is possible to release the

whole system. Bringing changes into production rapidly is a priority for any business. The more an application is

broken down into smaller components, the easier it is to deal with changes [17].

 Easier to build and maintain applications - Applications become easier to build and maintain when they are split

into a set of smaller fragments. Managing the code also becomes easier because each microservice is, in fact, a

separate part of code. MSA allows each service to be deployed, rebuilt, re-deployed and managed independently.

 Flexibility – is enabled when breaking a system into smaller components. The more the software is

loosely coupled, the easier it is to engage with open source, provided that there is a license. If a company needs

some functionality to be incorporated into the systems from open source components then it has to decompose the

system into smaller loosely coupled components.

 Independent scaling – only the parts of the application that need to be scaled up can be assigned with required

International Journal of Natural Sciences: Current and Future Research Trends (IJNSCFRT) (2022) Volume 13, No 1, pp 30-48

42

resources and this results in the efficient use of resources.

 Security – it is easier to focus on security by putting more sensitive services into more protective zones.

 Each service can be built using the best and most appropriate tool for the task – it is possible to move

parts of the system to the cloud. A company may decide to put some components on the cloud to be managed by

specialized competencies. Whether or not the decision is to use multiple technologies in a system, there is a

possibility to do it if needed.

 Redundancy – Usually, it is assumed that redundancy should be avoided.

In a microservices design, redundancy is a classic way of increasing resilience.

4.3 Mircroservices disadvantages

Despite the advantages, MSA has the following disadvantages:

 Communication between services is complex – since everything is now an independent service, you have to

carefully handle requests traveling between the modules. In such scenario, developers may be forced to write

extra code.

 Microservices are more expensive – services will need to communicate with each other which results in a lot of

remote calls. These remote calls result in higher costs associated with network latency and processing.

 Difficulties on small companies – microservices are great for large companies but can be slower to implement

and too complicated for small companies who need to create and iterate quickly.

 Interface is more critical – Each microservice has its own API. You can easily make changes to a microservice

without impacting the external systems interacting with it, but if you change the API any application using that

microservice will be affected.

5. Differences between SOA and MSA

At first glance SOA and MSA sound very similar, but they both are different form a traditional, monolithic

architecture where every service has its responsibility. Service-oriented architecture and microservices

architecture are both scalable and agile approaches, however they have some important differences.

5.1 Differences in development

In both approaches we use different and several programming languages and tools, this enables the development

team to have a diversity of technologies. The development process can be organized in multiple teams. In SOA

every team has to know about the common communication mechanism, but on microservices architecture the

services can operate and be deployed independently of other services [18].

5.2 Differences in service characteristics

The main difference in service characteristics is the service taxonomy. Microservices have very limited service

taxonomy and they consist of two service types: functional and infrastructure services. Functional services are

accessed externally and their role is to support specific business operations and functions; while infrastructure

International Journal of Natural Sciences: Current and Future Research Trends (IJNSCFRT) (2022) Volume 13, No 1, pp 30-48

43

services support nonfunctional tasks e.g. security, performance, authentication, authorization and monitoring.

Infrastructure services are not exposed to the outside world but they are treated as private shared services that

are available only internally to other services. Service taxonomy in SOA is different. Within this approach there

can be any number of services, but the architecture patterns defines four basic service types: business services -

abstract, high-level, coarse-grained services that define the core business operations that are performed at the

enterprise level. They are represented through XML or BPEL [19]. Enterprise services - concrete, enterprise-

level, coarse-grained services that implement the functionality defined by business services, application services

– they are also concrete, enterprise-level, coarse-grained services that implement the functionality defined by

business services. They provide specific business functionality that is not found at the enterprise level. And

infrastructure services – as in microservices architecture, these services support nonfunctional tasks.

Figure 3: Service taxonomy in MSA (left) and SOA (right)

Another difference is the service ownership and coordination. In SOA there are different service owners for

every type of services, for example: the owners of business services are business users, the owners of enterprise

services are shared service teams or architects, application services are owned by application development teams

and infrastructure services are owned by either application development team or infrastructure services team. In

SOA, in order to create or maintain a single business request you have to coordinate with a lot of groups e.g.

business users must be consulted about the abstract business services, shared services teams must be consulted

about the enterprise services created to implement the business services, application development teams must be

coordinated so that enterprise services can invoke lower-level functionality, and infrastructure teams must be

coordinated to ensure nonfunctional requirements are fulfilled. In MSA, in order to complete a business request

there is needed a little or no coordination at all. On cases where a little coordination is needed, it is done quickly

and efficiently through small development teams. In fact, service ownership and coordination is important

because it affects the effort and time that is needed for developing, testing, deploying and maintaining

applications. MSA has a priority thanks to the small size of services and their minimal coordination.

From the service perspective, a big difference between these two approaches is the service granularity.

Microservices are small, fine-grained services that are generally single-purpose and complete a specific task. In

SOA services can range in size anywhere from small application services to very large enterprise services. In

fact, it is common to have a service within SOA that represents a large product or even a subsystem. In MSA the

service functionality tends to be very small, sometimes implemented through only one or two modules; in SOA,

services tend to include much more business functionality, sometimes implemented as complete subsystems.

International Journal of Natural Sciences: Current and Future Research Trends (IJNSCFRT) (2022) Volume 13, No 1, pp 30-48

44

The difference in granularity affects the service’s scope and functionality, and also the management of

performance and transaction.

5.3 Differences in architecture characteristics

On the architecture topology of SOA and MSA we can find differences on sharing components. Service-

oriented architecture is focused on a share-as-much-as-possible architecture style, while microservices

architecture is focused on a share-as-little-as-possible architecture style. Component sharing is one of the most

important elements in SOA because it is what enterprise services are all about. For example; a retail company

that has to process orders uses customer-management system, warehouse management system and order

fulfillment system. Each of these systems has its own order service. If we want to update an order we need a

special business logic that has to be replicated across several applications in the enterprise because each system

has its own database. Among applications it might be needed additional verification and coordination. SOA

solves this problem with the help of enterprise-level shared services. To solve this problem you have to create a

centrally shared order service so that every application can share the same processing logic that is associated

with updating the order. This order service is smart enough to know on which database to go to retrieve and

update order data for each system, at the same time to synchronize the data among all three systems. In other

words, the order is represented not by one database, but by a combination of three databases.

Figure 4: Service component sharing on SOA

This architecture style solves the problems related to the duplication of business functionality, but on the other

hand leads to tightly coupled components and increases the overall risk that is associated with change. MSA and

share-as-little-as-possible architecture style use a domain-driven design called a bounded context which refers to

the coupling of a service and its data as a closed unit with minimal dependencies. You can minimize

dependencies and achieve the bounded context by replicating common functionality across services. A service

that is designed this way is very self-contained and exposes a well defined interface and contract. MSA makes

the service maintaining easier thanks to the lack of dependent modules that allows the service independent

change, and also the deployment is easier because there is less risk that a change made on one service will affect

other services.

Another difference that is included in the architecture topology is the service orchestration and choreography. In

order to understand the difference you have to understand the meaning of these terms. Service orchestration

International Journal of Natural Sciences: Current and Future Research Trends (IJNSCFRT) (2022) Volume 13, No 1, pp 30-48

45

indicates the coordination of a number of services with the help of a centralized mediator e.g. a service

consumer. The role of a mediator is to coordinate all the service calls that are needed for completing a business

transaction. Service choreography indicates the coordination of a number of services without the help of a

centralized mediator. On service choreography one service calls another service, which may call another service

and so on, performing a service chaining. SOA uses both orchestration and choreography to process a request.

Processing is done on this way: messaging middleware manages the orchestration by calling several enterprise

services that are based on a business service request while choreography is used to call application services and

infrastructure services. Microservices architecture prefers service choreography because it lacks a centralized

component; but the actual objective of microservices is to minimize the service choreography because it can

lead to high coupling. High coupling is risky because if a service is not available it can affect the overall

application. To avoid high coupling on service choreography you can combine fine-grained services into a more

coarse-grained service so that if a fine-grained service is shared among several services you can keep it

separately or add that common functionality to each coarse-grained service.

Accessing remote services is performed in different ways. The main difference on accessing these types of

services is that SOA has no restrictions and microservices rely on REST. In fact, the capability of SOA on

handling several kinds of remote-access protocols is one of the main differences between these approaches. This

ability of SOA comes by the messaging middleware component that supports any number of remote protocols

and allows transformation from one protocol to another. The limited number of technologies used in

microservices affects its simplicity and ease of usage. As we mention above, microservices are focused on

REST and simple messaging but that does not mean that you cannot use other protocols such as SOAP or .NET

but they will not be needed since most of the services are REST-based or messaging based.

5.4 Differences in architecture capabilities

Scope and size is one of the main differences between these two architecture styles. SOA has an enterprise

scope, while the microservices architecture has an application scope. The prefix “micro” in microservices refers

to the granularity of the internal components, meaning they have to be significantly smaller than what SOA tends

to be. In fact the fine-grained nature of microservices affects the scope and decreases its size. Service

components within microservices generally have to accomplish a single purpose. On the other hand, in SOA

services usually include much more business functionality and they are often implemented as complete

subsystems.

Heterogeneous interoperability refers to the ability to integrate with systems implemented in different

programming languages and platforms. SOA supports the usage of multiple heterogeneous protocols, while

microservices try to create a more simple architecture by reducing the number of choices. So if you are

developing an application where there is needed integration of several types of services with the help of several

types of protocols, you should rely towards SOA; but if all the services can be accessed through the same

protocol then you should rely towards microservices architecture.

5.5 Which is best for you?

International Journal of Natural Sciences: Current and Future Research Trends (IJNSCFRT) (2022) Volume 13, No 1, pp 30-48

46

There is no definite answer to this question. In some cases SOA is the best option, in others it will not be as

effective as microservices. Service-oriented architecture and microservices architecture are run in the cloud,

which increases the flexibility for developing and deploying applications, but choosing the right approach

depends on the business needs and requirements. Both of the approaches have its own advantages and

disadvantages but for determining which one will work best you have to analyze the kind of the project that your

team is working on. Regardless of which approach you are going to use, you will have development diversity

because they can be developed in different technology stacks. You also have to determine how large and diverse

the application you are developing is; for larger and more diverse environments you can use service-oriented

architecture because it supports integration between heterogeneous applications and messaging protocols with the

help of an enterprise-service bus (ESB). On the other hand, while developing web applications and mobile

applications that do not need a powerful communication layer you can use microservices architecture. Service-

oriented architecture is preferred when developing complex applications, applications that require interaction with

one another and applications that are constantly developing. Microservices architecture is preferred when

developing smaller web-based applications, projects where a developer wants to have as much control as possible

and when you want to bring the application to the market as soon as possible. It is not easy to tell which

architecture is less complex because they both require developers to deal with distributed systems and other

challenges. Also, while choosing the right architecture you should asses the capacity, skills and ability to adapt

the architecture.

5.6 Solving differences between SOA and MSA

The ideal IT architecture would be the one that is able to combine a composable service architecture and the

organizational principles behind microservices. In other words, businesses should be approaching microservices

and SOA, rather than microservices vs SOA [20]. That can be achieved by being organized around an application

network. An application network can combine small, composable and reusable services designed around

particular business capabilities that are connected via APIs. Also, an application network allows many people

both inside and outside the enterprise to have controlled access to business data and to reusable microservices. It

makes it easier for anyone in the organization to create a useful application, set of data, or an API by creating a

particular experience through a composable service approach, and then exposing that value to the network. If the

service is available beyond the scope of the project, then the provider’s service is exposed to the network and can

be used in other projects too.

References

[1] Cerny T., Donahoo M.J., Pechanec J., “Disambiguation and Comparison of SOA, Microservices and

Self-Contained Systems”, International Conference on Research in Adaptive and Convergent Systems,

2017, pp. 228-235

[2] Richards M., “Microservices vs. Service-Oriented Architecture”, O’Relly Media Inc., Sebastopol, CA,

2016. pp.1

International Journal of Natural Sciences: Current and Future Research Trends (IJNSCFRT) (2022) Volume 13, No 1, pp 30-48

47

[3] IBM Cloud Team, IBM Cloud, “SOA vs. Microservices: What’s the difference”, September 2020,

[https://www.ibm.com/cloud/blog/soa-vs-microservices], Accessed January 18, 2021.

[4] O’Reilly., “Microsevices vs. Service-Oriented Architecture by Mark Richards”,

[https://www.oreilly.com/library/view/microservices-vs-service-oriented/9781491975657/ch01.html],

Accessed January 20, 2021.

[5]ContractsCounsel, “Service Contract”, [https://www.contractscounsel.com/t/us/service-contract],

Accessed 20 January, 2021.

[6]MuleSoft, “Services in SOA”, [https://www.mulesoft.com/resources/esb/services-in-

soa#:~:text=What%20is%20a%20service%20in,%2C%20a%20contract%2C%20and%20implementatio

n.&text=These%20characteristics%20enable%20services%20to,designed%20according%20to%20SOA

%20principles.], Accessed January 21, 2021.

[7] Erickson J., Siau K., “Web Services, Service-Oriented Computing and Service-Oriented Architecture:

Seperating Hype from Reality”, Journal of Daabase Management, pp.42-54, 2008.

[8] Erl T., “Service-Oriented Archittecture. Analysis and Design for Services and Microservices”, Arcitura

Education Inc., 2017

[9] Hurwitz J., Bloor R., Baroudi C., Kaufman M., “Service Oriented Architecture for Dummies”, Wiley

Publishing Inc., Indianapolis, Indiana, 2007

[10]Flylib, “SOA delivery lifecycle phases”,

[https://flylib.com/books/en/2.365.1/soa_delivery_lifecycle_phases.html], Accessed January 23, 2021.

[11]Flylib, “The agile strategy”, [https://flylib.com/books/en/2.365.1/the_agile_strategy.html], Accessed

January 23, 2021[12]Mahmood Z., “The Promise and Limitations of Service Oriented Architecture”,

International Journal of Computers, Issue 3, Volume 1, pp. 74-78, 2007.

[12]Mahmood Z., “The Promise and Limitations of Service Oriented Architecture”, International Journal of

Computers, Issue 3, Volume 1, pp. 74-78, 2007.

[13]Nadareishvili I., Mitra R., McLarty M., Amundsen M., “Microservice Architecture: Aligning Principles,

Practices and Culture”, O’Reilly Media Inc., Sebastopol, 2016, pp.6

[14]Hamzehloui M. S., Sahibuddin S., Ashabi A., ”A Study on the Most Prominent Areas of Research in

Microservices”, International

Journal of Machine Learning and Computing, Vol.9, No.2, pp.242-247, April 2019.

[15]Francesco D. P., Lago P., Malavolta I., “Research on Architecting Microservices: Trends, Focus and

International Journal of Natural Sciences: Current and Future Research Trends (IJNSCFRT) (2022) Volume 13, No 1, pp 30-48

48

Potential for Industrial Adoption”, IEEE International Conference on Software Architecture, pp.21-30,

2017.

[16]Newman S., “Building Microservices”, O’Reilly Media Inc., Sebastopol, 2015.

[17] Elfatatry A.,”Microservices: A Review of the Costs and the Benefits”, The Fifth International

Conference on Advances and Trends in Software Engineering, 2019.

[18]Arsov K., “Microservices vs. SOA – Is There Any Difference at All”, November 2017,

[https://kikchee.medium.com/microservices-vs-soa-is-there-any-difference-at-all-2a1e3b66e1be],

Accessed January 26, 2021.

[19]Tuli S., “Microservices vs SOA: What’s the difference”, DZone, 16 May 2018,

[https://dzone.com/articles/microservices-vs-soa-whats-the-difference], Accessed January 26, 2021.

[20]MuleSoft, “The differences between microservices and SOA”,

[https://www.mulesoft.com/resources/api/microservices-soa], Accessed January 27, 2021.

