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Abstract

In most manufacturing and assembly industries, such as automotive, aerospace, and nuclear power plants, it is
critical to inspect the integrity of the used parts and components to avoid possible system failure for safety and
quality control reasons. In addition, an unexpected failure causes extra costs due to the additional costs of
maintenance, reparations, or even service delivery delays. Therefore, building an automated inspection system
using industrial testing techniques such as Non-Destructive Testing (NDT) using X-ray computerized
tomography (CT) is highly recommended. This paper proposes a Hybrid Defect Detection (HyDD) to automate
the inspection process and improve defect detection accuracy. The proposed framework investigates
incorporating deep learning and image processing techniques to enhance inspection performance and build an
adaptive inspection system. The proposed method is validated using a real X-ray CT dataset with different types
of defect scenarios. The results show that the proposed method could detect most defects and achieve up to 88%
of the average detection rate. The proposed framework could be extended to defect-type recognition using

object detection or semantic segmentation deep learning models.
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1. Introduction

During the Nuclear power plants undergo scheduled inspections to identify any potential issues and ensure
compliance with safety regulations. These inspections may include visual inspections, testing of equipment, and
monitoring of critical systems. In case of extensive maintenance activities, including inspections, repairs, and
replacement of major components; the plant outages need to be carefully conducted in the shortest possible
period to minimize the impact on the electricity supply and reduce the forced power outage cost ( in 2022, the
unscheduled outages at Point Lepreau cost between $28,500 and $45,700 per hour (an average of $10 per
second), depending on different factors such as the time of year and market conditions as reported by CBC
News [1]). During the outage, many precautions are considered such as holding the Vault down till all entered
objects are visually inspected, manually disassembled, and checked with no missing components. One of the
merging technologies that help in accelerating object inspection is the non-destructive testing (NDT) technique.
Many NDT inspection methods were proposed in the literature using different imaging technologies [2,3,4]:
thermography, radiography, ultrasonic techniques, etc. Some of these methods are based on computer vision
models trained on manually annotated datasets [5,6,7]. However, the efficiency of these deployed models
depends on the size and quality of the training datasets. Other methods are based on signal and image processing
methods using predefined shapes techniques [8], using predefined statistical models such as the Kriging model
to calculate the shape deviation errors [9,10]. In the X-ray CT-based systems market, there exist different
solutions and products for automated industrial inspection such as [11,12,13]. In addition, the Carl Zeiss AG
Reference [14], and VisiConsult X-ray Systems [15], provide additional features such as automated object-

loading robotic arms.

In this paper, a hybrid defect detection (HyDD) method is proposed for 3D CT data inspection. The proposed
methods combine digital signal/image processing (DSP) techniques with deep neural networks (DNN) to detect
internal defects (missing, displaced, or added internal components ). The proposed framework can be divided
into two main parts. First, data pre-processing where the input data are pre-processed to filter noise, remove the
background, and align the input CT data with the reference defect-free data. Second, the processed data are fed
to DSP-based inspection to detect the relevant defects and refined using the DNN-based model to omit the

artifact and the false detections.

This paper is organized as follows. The section 2 presents a general overview of the proposed framework
including the pre-processing and inspection algorithms. In section 3, the obtained results are reported and

discussed. Finally, section [sec_conclusions] recaps the work conclusions with some future works.
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Figure 1: Hlustration of the proposed hybrid defect inspection using CT volume data

2. Proposed Method

During the nuclear power plant’s reactor maintenance, the utilized object/tools for inspections may get damaged
or accidentally broke leaving impurities inside the reactor which represents an operational risk for the reactor.
Therefore, it is crucial for safety reasons to check the integrity of the maintenance objects ensuring that nothing
is left behind after the maintenance is finished. In our study, we focus mainly on inspecting the maintenance
object by processing its computerized tomography (CT) scan before and after the maintenance task. The
proposed work combines the standard inspection with the machine learning aspect to improve inspection
performance by extracting the different defect patterns and incorporating the inspection history data. The
proposed inspection framework is based on two main components: data pre-processing and hybrid defect
inspection using digital signal processing (DSP) and deep learning (DNN) based inspection methods. Figure 1

presents the flowchart of the proposed method using pre-processed 2D and 3D X-ray CT data.

2.1. Dataset

The used data consists of five CT scans of a maintenance object fabricated of Aluminum composed of different
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parts. The object was scanned by our collaborators from Diondo and Fraunhover. Due to the big size of the
entire object scan and to the limitation of computation resources and for academic demonstration, we considered

a case study part of the object as shown in Figure 2.

Spring Clip Spring-holder Base part
List of components

Case study part

The entire maintenance tool

Figure 2: Examples of the parts contained in the case study object

The object was scanned with different scenarios of defects (missing or additional parts) using these scanner
configuration parameters: Voltage=320kV, Current= 2000uA, power =640W, Focus= 0.4mm, with a Cu-1mm
filter in continuous rotation Mode. The acquired 1500 projections are used for the reconstruction of the 3D
volume of size 752x154x752.

2.2. Data pre-processing

The data pre-processing of X-ray data is the most crucial stage in CT inspection data preparation. It is the first
processing phase that handles the acquired 2D or 3D raw data from the scanner. It includes data structuring, data
storage, and data preparation for more advanced processing such as denoising, registration, and background
removal. The pre-processing step has a major role in the industrial inspection process as it makes the collected
2D or 3D suitable for the inspection algorithm. However, the pre-processing has main components: First, the
image reconstruction which converts the acquired 2D projection images into a 3D data volume [16]. It is
performed using the FDK reconstruction algorithm [17]. Second, the background removal or subtraction cleans
the background noise of the scanned object or any unwanted component such as the piece of wood usually used
to support the object inside the scanner during the scanning process. Finally, the image registration
geometrically aligns the reference volume with the scanned volume and corrects the misalignment caused by the
manual manipulation of the object inside the scanner. It is worth mentioning that for large volume sizes ( greater
than the CT scanner size), the CT scanning process will consist of scanning the object in parts to fit into the

scanner. Therefore, the resultant 3D volume of each object section will need to be inspected individually and
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combined later with the other inspected parts to form the final 3D volume of the whole object. Therefore, the
pre-processing of large-size volumes becomes very slow and will need higher computational resources [18].

More details of the data pre-processing are presented in details in this previous research work [19].

Algorithm 1 The DSP-based defect detection algorithm
1: Input : y,: the reference 2D image
2: y1: the input 2D image
3: My the defect detection threshold (0 < My, < 1)
4: Qutput: mask: 2D defect mask

s: o Registration of the images 1y, and y,
6 Uy , Yy = registration(yo, y1)

7. ¢ Background subiraction

8: 5 = subtract_background(y;)

9: y; = subtract_background(y7)

10: ¢ Compute the initial residual mask
11: mask = create_mask(y; , y9)

12: ¢ defect mask refinement
13: mask = erosion(mask)

14: © Defect mask thresholding
15: for all pixels "pz’ in mask do

16: if mask(pz) < M,;, then
17: mask(pr) =0

18: end if

19: end for

20. ©  Omit surface defects by cropping the object body
21: mask = object_body(mask)

22: return mask

Figure 3

2.3. Hybrid Defect Inspection

In this paper, we propose a hybrid inspection framework by combining both image processing-based algorithms
with deep learning-based models. It consisted initially of the use of an image processing algorithm to detect and
localize the most suspicious regions. Then, use a classification model to confirm and rectify the defective slices.
The training dataset is automatically annotated and verified by an expert based on the defect detection outputs of
the image processing algorithm applied to the first scans. Figure 4 illustrates the flowchart of the proposed
hybrid defect detection method and explores the interaction between the DSP and DNN components. The main

components of the defect inspections are presented in the following sections.

2.4. DSP-based defect inspection

The proposed image processing-based defect detection algorithm localizes the fault/defect by comparing the
pattern in the input image to the reference image (complete object) to recognize the defective regions. Knowing
that the raw images need to be reprocessed to handle the noise, to correct the geometrical shift or tilt. The pre-
processing as explained in the previous section is very critical and ensures that the reference and input images

are correctly aligned with similar properties pixel-wise. The proposed algorithm, as shown in Algorithm
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[algo:dsp-2D], applies different processing layers to the residual image such as defect refinement to withdraw
the noise and bypass the non-relevant and very tiny defects. The same algorithm is extended for 3D volume
inspection by applying the 2D algorithm to every slice of the volume separately. The detected defects in the
different slices of the 3D volume are concatenated to form the resulting 3D defect volume as illustrated in
Figure 3. It is worth mentioning that 3D registration is time-consuming and takes most of the time required to
complete the inspection operation. In addition, an acceptable 3D registration needs to carefully manipulate the
object during the scanning process by minimizing as much as possible the object translation, rotation, and tilt

compared to the reference position.

Figure 4: Example of 3D inspection showing the missing components

2.5. Deep Learning-based defect rectification

In some scenarios, the CT scanning artifacts are very sound which will affect the performance of the DSP-based
algorithm. In this case, the defect output mask needs to be further refined by ignoring the slices/images with
artifacts to be predicted as defect-free using the trained deep learning-based classification model. The model is
trained using an automatically generated dataset from the results of previous inspection reports manually
validated by an expert. The framework of the automated slice labeling is presented in Figure 4. The data quality
is a key factor that will affect the model training and performance. Therefore, it is very important to make sure
that the training dataset is verified and tracked along the process using existing data versioning platforms such
as DVC [20].

The classification model will extract the relevant pattern showing the difference between a real defect (missing,
displaced, or added internal components) and the artifact (noise, background removal error). The ResNet
classification model architecture is used to learn the false defective pattern in the 3D volume slices. The model
will be trained using the annotated slices of the 3D volume. For the training phase, a set of training parameters
such as the learning rate, optimizer, and batch size will be tuned to get the best-trained model while the number

of epochs is automatically defined when the model reaches the best possible testing accuracy.
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An example of the model training and testing performance is shown in Figure 5. It shows the training loss and
the obtained testing accuracy ( 91.7%). The trained model will be later used to recognize the defect-free slices

and omit them from the defect mask. An example of the defective slice rectification is presented in Figure 6.

il
\
L

Rectified Slices

DSP-based inspection

DNN-based rectification

Figure 7: Example of DNN-based defective slice rectification

3. Proposed Method

In this part, we will explore the experimental analysis performed to study the performance of the proposed

method using real CT dataset of an Aluminum object as explained in the coming sections.

3.1. Performance evaluation

To evaluate the obtained results, the performance of the inspection results is measured using two main metrics:
e Accuracy metric: measures the rate of correctly detecting defects and is defined as follows:

Accuracy = M
max(Nye, Na. )

o Quality metric: defines the sensitivity of the detection by considering regularized cost function defined as:

Quality = M — Ax o Ner
max(Ngt, Ndc) max(Ngt, Ndc)

where Ny, is the ground truth number of truly defective components. Ny, is the number of correctly detected is

the number of correctly detected defective component. N, is the number of artifacts ( or wrongly detected
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defective components). A is a regularization parameter set to A=0.1

3.2. Inspection performance analysis

The proposed hybrid inspection method was evaluated on the collected real X-ray CT dataset to assess its
capability in identifying internal defects. Table 1 summarizes the performance across different defect scenarios.
Overall, the method successfully detected the majority of existing defects, achieving an average detection rate of
88.9%.

Table 1: Performance characterization of detected missing components and artifacts using different real CT data

Input Data Defect Inspection
Scan Scan defect Parameter | Defect mask #defective #detected #artifact | Accuracy | Qualit
ID M,y components | components | s metric y
metric
M1 .,b";@ 0.35 6 6 5 100.0% | 91.7%
I
M10 H‘:@ 0.48 6 6 8 100.0% | 86.7%
]
K
M14 ""'3@ 0.35 9 9 8 100.0% | 91.1%
>
d
LR
M18 \} ’ 03 10 5 100.0% | 95.0%
* '.
*J?Ji
LR
MO02 - Mth = 1 2 100.0% | 80.0%
,@ 0.78
H
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While this performance demonstrates the effectiveness of combining deep learning and image-processing
techniques, several patterns were observed. The method consistently performed well on medium-to-large defects
with clear density contrast. However, small or low-contrast defects were more challenging to localize, particularly
when embedded in noisy or highly heterogeneous regions. This suggests that stronger feature-enhancement

mechanisms or tailored pre-processing steps may improve sensitivity in difficult cases.

3.3. Qualitative comparison with existing solutions analysis

A qualitative comparison with representative CT-based inspection systems is summarized in Table 2. Most
existing systems rely primarily on DSP-based defect detection algorithms and are commonly tailored to specific
component geometries or defect types. Many commercial solutions (e.g., DIRA-GREEN, RoboTom, and ADR-
based platforms) provide automated scanning and object handling, but their defect-detection logic is largely
deterministic and optimized for narrow scenarios ( typically porosity inspection in welds or small, well-
characterized parts) . As a result, their generalization capability is limited, and reconfiguration for new part types

or defect categories often requires manual adaptation.

Table 2: Comparison of existing CT inspection systems

Inspection
System Algorithm |Automated Commercialized? [Notes / Limitations
DSP |DNN
Automated + automated system
scanning and
DIRA-GREEN [21] v inspection DIRA-GREEN - Only for small objects
+different defect location images
are used as ’golden’ images to
Qualinet each other
Automated Defect NA He
Recognition (ADR) [8 . :

g ( ) 8] -Only valid for one unique
object of known shape and
defect locations
+inspect large assembly joints

linet RoboTom [22] |v/ Robotic arm, U ySCAN

ualinet RoboTom a L
0 2] shaped XCT -Focuses on porosity in weld
defects
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+ small and medium parts

inspection
) ) Robotic arm for
ADR X-ray inspection ) ~ |[XRHRobotStar], »
v object loading| +Part recognition
[15] ) VisiConsult
[videos]

-Focuses on porosity in weld
defects

+ combines DSP and DNN

algorithms

Our proposed method

v NA + missing parts detection
(HyDD)

- needs the integration of

incremental training

In contrast, the proposed HyDD framework integrates both DSP-based processing and a DNN-based model
within a unified inspection pipeline. Automated annotation assisted by human-in-the-loop verification reduces
labeling effort and enables scalable training updates. This hybrid structure improves robustness to diverse defect

shapes and supports missing-part detection.

While the proposed method remains at the experimental validation stage and would require incremental training
and large-scale qualification before industrial deployment, its hybrid design offers a clear progression beyond
existing DSP-only solutions. The approach presents a promising path toward adaptive CT-based defect detection

suitable for evolving production environments.

3.4. Limitations

The hybrid inspection framework provides several advantages, including:

o leveraging deep learning to learn defect features without requiring reference scans
¢ enabling knowledge transfer, allowing a trained model to be adapted to similar object types with reduced

retraining effort.

However, several limitations must be acknowledged:

e Manual parameter tuning: The primary DSP threshold parameter (M,,) requires manual calibration. Its
value may vary with new datasets or acquisition conditions, potentially affecting detection stability.

o Difficulty with small / low-contrast defects: Distinguishing very small internal defects from artifacts is
challenging, particularly under low resolution or high noise (see Figure 7). More suitable CT configurations

or adaptive acquisition parameters may be necessary.
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Figure 7: Examples of the failed inspection: [top] detected clip and artifacts; [bottom] one missing clip

o Limited dataset diversity: Performance is validated on a real CT dataset but with constrained variety in part
geometry and defect types. Broader datasets are needed to confirm generalizability across industrial
environments.

e Computational cost: The combination of DSP and DNN introduces non-negligible computational overhead.
Although manageable for offline analysis, real-time deployment may require additional optimization or

dedicated hardware.
4, Conclusions and Future Work

This work presents a hybrid defect-detection framework for 2D and 3D X-ray CT inspection that combines
image-processing techniques with deep learning. The method integrates background removal, denoising, and
registration to prepare the input data, followed by DSP-based defect localization. A ResNet-based classifier is
subsequently applied to reduce false detections and refine defect assessment. The experimental evaluation
demonstrates that the proposed framework can reliably detect internal defects, achieving an average detection

performance of 88.9% across multiple CT scan scenarios.

Despite these promising results, the current implementation remains in an experimental phase. Future efforts
will focus on enhancing the deep neural network through continual learning strategies to improve adaptability
and reduce overfitting in long-term data streams. We also plan to investigate the integration of object-detection
and semantic-segmentation models to enable more detailed defect recognition and categorization. Additional
work will include expanding the training dataset, automating pre-processing steps, and studying adaptive
scanning configurations to better handle small or low-contrast defects. These developments aim to support

future deployment of the proposed framework in industrial non-destructive testing environments.
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