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Abstract  

The increasing demand for sustainable and efficient nuclear energy has driven the adoption of Small Modular 

Reactors (SMRs), which offer enhanced safety, flexibility, and operational efficiency. However, the 

effectiveness of SMR control rooms remains highly dependent on human performance, where factors such as 

cognitive workload, psychological stress, and ergonomics play a crucial role in operator decision-making. 

Traditional control room monitoring systems primarily focus on basic physiological metrics such as heart rate 

and fatigue, lacking the capability to dynamically assess cognitive and environmental factors in real-time. This 

study explores the integration of automatic systems in SMR control rooms to monitor human performance and 

health mitigate operational risks. By leveraging wearable sensors, eye-tracking technology, and powered 

decision support. Key findings suggest that real-time monitoring significantly enhances situational awareness, 

workload balancing, and decision-making efficiency. Furthermore, integrating predictive analytics and adaptive 

automation within SMR control rooms can lead to a safer, more efficient operational environment, ensuring 

reliability in high-stakes nuclear applications. The proposed system represents a paradigm shift in human-

machine collaboration, offering a holistic approach to improving safety and efficiency in next-generation 

nuclear control rooms. 
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nuclear control rooms; ergonomics, predictive analytics. 

------------------------------------------------------------------------ 

Received: 3/15/2024  
Accepted: 5/12/2024 

Published: 5/25/2024 
------------------------------------------------------------------------ 

* Corresponding author.  

https://ijnscfrtjournal.isrra.org/index.php/Natural_Sciences_Journal/index


International Journal of Natural Sciences: Current and Future Research Trends (IJNSCFRT) - Volume 22, No  1, pp 68-97 

69 
 

1. Introduction 

With the increase in energy demands around the world, there is a great need for nuclear technology. Various 

strides have been taken to advance nuclear technology, the latest being the Small Modular Reactors (SMR). 

While inspiration can be taken from the existing nuclear reactors, the existing main control rooms (MCR) lack 

ergonomic and attention capacity principles. SMRs are advanced nuclear reactors that have a power capacity of 

up to 300 MW(e) per unit, which is about one-third of the generating capacity of traditional nuclear power 

reactors. As conventional reactors are bigger in size, they have to have huge control rooms. Multiple people are 

present in the control rooms during the operation of the reactors. Those control rooms were designed in the last 

century, so the controls are mostly dials and knobs with analog displays with some digitization.  

Small Modular Reactors (SMRs) represent a paradigm shift in nuclear energy production, characterized by their 

compact size, modular design, and enhanced safety features. As the demand for sustainable and efficient energy 

sources grows, SMRs have emerged as a promising solution to meet global energy needs while addressing 

environmental concerns. However, the operation of SMRs requires exceptional precision and reliability, as even 

minor errors in control room performance can lead to significant consequences. 

Traditional nuclear control rooms rely on static monitoring systems that primarily focus on basic physiological 

metrics such as heart rate and fatigue. While these systems provide valuable insights into operator performance, 

they fail to address more complex factors such as psychological state, cognitive workload, and environmental 

stressors. Additionally, the dynamic and high-stakes nature of SMR operations necessitates real-time adaptation 

to varying conditions, a capability that current systems lack. 

Advances in automatic monitoring and wearable technologies offer unprecedented opportunities to bridge these 

gaps. This automatic monitoring can analyze vast amounts of data in real time, enabling more comprehensive 

monitoring of operator performance. For instance, tools such as EEG headbands, gaze tracking devices, and 

voice analysis can provide detailed insights into an operator's psychological and cognitive state. Similarly, smart 

environment control systems can dynamically adjust lighting, noise levels, and ergonomic factors to optimize 

operator efficiency. 

This paper seeks to explore the integration of these advanced technologies into SMR control rooms, with a focus 

on enhancing human performance and safety. By addressing critical research gaps and proposing innovative 

solutions, this study aims to pave the way for a new era of smart-enhanced nuclear control systems that 

prioritize both human and technological factors. The research problem definition and scope are summarized in 

Figures 1 and 2. 
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Figure 1: Problem Definition of The SMR Operation (Human Factors). 

 

Figure 2: The Scope Summary of the work. 

2. Literature Review 

The safe operation of nuclear reactors depends significantly on the human element. Operators play a crucial role 

in ensuring smooth reactor performance, managing routine and emergency situations. Physical and mental 

health conditions can influence an operator’s ability to execute tasks effectively, impacting decision-making, 

reaction time, and overall safety. This literature review examines how physical and mental health factors affect 

nuclear reactor operators and highlights the importance of regular health assessments in maintaining operational 

fitness. 

2.1. Overview of Small Modular Reactor (SMR) Control Rooms 

SMR control rooms are designed to facilitate the monitoring and management of nuclear reactor operations, 

incorporating advanced technologies to ensure safety and efficiency. According to the International Atomic 

Energy Agency (IAEA), SMRs are distinguished by their modular nature, smaller physical footprint, and the 

ability to operate independently or as part of a larger network [1]. The design of SMR control rooms differs 
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from traditional nuclear control rooms due to their focus on automation and operator support. Studies such as 

those by Bae and Lee. (2024) emphasize the role of digital instrumentation and control (I&C) systems in 

enhancing the operational capabilities of SMRs. These systems leverage human-machine interfaces (HMIs) to 

streamline operator interactions with complex reactor processes, reducing the cognitive load and potential for 

human error [2].  

The human factors (HFE) in SMR control room design research have highlighted the importance in ensuring 

safe and efficient operations. A report by the U.S. Nuclear Regulatory Commission (NRC) (2024) outlines the 

application of HFE principles in control room design, focusing on ergonomics, usability, and operator training. 

The integration of these principles aims to create a user-centric environment that minimizes fatigue and 

enhances decision-making accuracy [3]. Further studies by Orikpete and Ewim (2023) reviewed the interplay 

between human factors, safety culture, organizational performance, and individual behavior in nuclear power 

plants, highlighting recurring issues like communication breakdowns, leadership failures, and human error. 

Drawing lessons from past disasters, it advocates for an integrative approach combining organizational and 

individual performance metrics with human factors and safety culture insights, reinforced by continuous 

research and evaluation, to build a robust safety framework for nuclear establishments[4]. Furthermore, 

automation is a cornerstone of SMR control room operations, enabling reduced staffing requirements and 

enhanced operational efficiency. AI technologies play a critical role in automating routine tasks, monitoring 

system performance, and predicting potential faults. Lee and Park (2023) explored the use of predictive 

analytics in SMR control rooms, demonstrating how machine learning models can identify anomalies in reactor 

behavior before they escalate into critical issues [5]. 

The integration of AI-powered decision support systems has also been shown to improve situational awareness 

among operators. A study by Zhang and his colleagues (2024) highlights the effectiveness of these systems in 

providing real-time insights and recommendations, allowing operators to respond more effectively to dynamic 

operational conditions [6]. 

However, safety remains a primary concern in SMR control room operations. Recent advancements in risk 

assessment methodologies have been tailored to address the unique challenges of SMRs. A comprehensive 

review by Park and Kang (2024) identifies the potential for AI-driven safety management systems to enhance 

the detection and mitigation of operational risks. These systems utilize real-time data from sensors and other 

monitoring devices to provide early warnings of potential safety breaches [7]. The future trends in SMR control 

rooms are the emerging using of digital twins, augmented reality (AR), and virtual reality (VR) for training and 

operational support. Digital twins, as described by Jones and his colleagues (2024), offer a virtual replica of 

reactor systems, enabling operators to simulate various scenarios and optimize performance under different 

conditions [8]. AR and VR technologies are increasingly being used to enhance training programs, providing 

immersive environments where operators can develop critical skills without the risks associated with live reactor 

operations [9]. The human factor continues to be a critical concern in safety-critical systems like nuclear and 

chemical plants. With the increasing adoption of artificial intelligence (AI) in various fields, AI presents a 

promising solution to support operators and reduce risks in these high-stakes environments. The integration of 

artificial intelligence (AI) and mobile computing in nuclear power plant (NPP) systems represents a 
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groundbreaking strategy for improving safety and reliability. By combining the predictive power of AI 

algorithms with the real-time data transmission capabilities of mobile devices, this approach significantly 

enhances decision-making processes and ensures continuous support for safe plant operations. As advancements 

in AI, IoT integration, and mobile interfaces progress, these technologies are expected to further strengthen NPP 

systems, creating more robust and resilient operations for the future of nuclear power [10]. 

2.2. Human Factors Effects on Control Room Performance 

Human behavior plays a pivotal role in the operation of SMR Control Room, influencing performance, safety, 

and overall system reliability. Before integrating human behavior into reactor operations, it is essential to 

analyze and address specific human variables. These variables encompass both micro (personal) and macro 

(environmental/organizational) factors, each with a significant impact on operator reliability, performance, and 

monitoring systems. According to Park, J. (2024), eight critical Performance Shaping Factors (PSFs) have been 

identified to assess and improve human interaction with reactor systems. This article explores these factors and 

provides insights into data-driven approaches for optimizing reactor operations [11]. 

2.3. Human Variables and Performance Shaping Factors 

2.3.1. Micro (Personal) Factors 

Micro factors pertain to individual operator characteristics, which directly affect their performance during 

reactor operations. These include: 

 Experience: Operator performance is strongly correlated with experience. More experienced personnel 

exhibit higher efficiency and reliability under stressful operational conditions. 

 Training: Adequate and ongoing training ensures operators are well-prepared to handle various 

scenarios, reducing the likelihood of human error. 

 Fitness to Work: Physical and mental health conditions significantly influence an operator's ability to 

perform tasks effectively. Regular health assessments are critical to maintaining fitness levels conducive to safe 

reactor operations. 

2.3.2. Physical Health and Operator Performance 

I.  Fatigue and Sleep Deprivation 

Fatigue and sleep deprivation have been widely studied in high-risk industries. Studies indicate that insufficient 

sleep impairs cognitive function, reduces alertness, and increases the likelihood of operational errors [12]. 

Research on shift workers, including reactor operators, suggests that night shifts and long working hours can 

lead to chronic fatigue, significantly affecting performance [13]. 

II. Chronic Health Conditions 
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Chronic conditions such as cardiovascular disease, diabetes, and musculoskeletal disorders can hinder an 

operator's physical capabilities. Reduced stamina, impaired mobility, and medication side effects may contribute 

to slower reaction times and decreased efficiency in performing critical tasks [14]. 

III. Occupational Hazards and Their Impact on Health 

Reactor operators may be exposed to various occupational hazards, including radiation and ergonomic stressors. 

Prolonged exposure to low-dose radiation has been linked to long-term health risks, including cancer, fatigue, 

and cognitive impairment [15]. Poor ergonomic conditions can also contribute to repetitive strain injuries, 

affecting an operator's ability to work effectively [16]. 

2.3.3. Mental Health and Cognitive Performance 

I. Stress and Decision-Making 

High-pressure environments in nuclear control rooms can contribute to significant stress levels. Elevated stress 

has been shown to impair decision-making abilities and increase error rates in safety-critical operations [17]. 

Research highlights that stress management training can improve operators' ability to function under pressure 

[18]. 

II. Anxiety and Depression 

Mental health disorders such as anxiety and depression can negatively affect an operator’s concentration, 

memory, and situational awareness. Studies indicate that untreated mental health conditions can lead to 

increased absenteeism, lower job performance, and higher risk of operational errors [19]. 

2.3.4. The Importance of Regular Health Assessments 

I. Medical Screening Programs 

Periodic medical examinations are crucial for detecting early signs of health deterioration. Regulatory 

frameworks mandate health assessments for nuclear reactor operators to ensure fitness for duty and minimize 

safety risks [20]. 

II.  Psychological Evaluations and Coping Strategies 

Mental health assessments, including stress resilience evaluations, can help identify operators at risk of burnout. 

Studies suggest that incorporating psychological resilience training enhances performance and reduces 

workplace stress [21]. 

III. Intervention Strategies and Policy Recommendations 

Organizations should implement workplace wellness programs, including ergonomic training, stress 



International Journal of Natural Sciences: Current and Future Research Trends (IJNSCFRT) - Volume 22, No  1, pp 68-97 

74 
 

management workshops, and fitness-for-duty evaluations. Policies aimed at improving work-life balance can 

enhance both physical and mental well-being [22]. 

To effectively integrate micro factors into reactor operations, organizations can leverage advanced monitoring 

and analysis tools as in table 1. 

Table 1: Human Factor Monitoring and Performance Optimization in SMR Operations 

Data Source Description Use in Research Results/Impact 

Live Camera Output Real-time visual 

monitoring of 

operator actions. 

Used for immediate 

feedback, performance 

evaluation, and error 

detection. 

Identifies operational 

inefficiencies, improves 

human performance 

monitoring. 

Wearable Smartwatch Monitors operator's 

BPM (heart rate) and 

BP (blood pressure). 

Tracks physiological 

responses to workload and 

environmental conditions. 

Provides real-time health 

monitoring, helping prevent 

fatigue-related errors and 

optimizing shift schedules. 

Integrating these human variables into reactor operations allows for a more holistic approach to safety and 

efficiency. The physical fitness and mental alertness of operators are pivotal to ensuring high performance and 

operational safety, particularly in high-stakes environments such as control rooms or industrial facilities. 

Physical fitness impacts an operator’s ability to perform tasks that demand sustained effort, rapid responses, and 

effective management of complex machinery. Fatigue, poor posture, or underlying health issues can hinder 

physical capabilities, leading to reduced productivity and increased risk of errors. Mental awareness is equally 

crucial for operational success. Stress, distractions, or cognitive overload may impair an operator’s ability to 

make timely and accurate decisions. Key factors influencing mental awareness include sleep quality, workload, 

and stress levels, all of which directly affect focus, situational awareness, and decision-making. 

2.4. Monitoring Physical and Mental Readiness 

To ensure the physical and mental readiness of operators, a variety of methodologies and technologies are 

employed as in table 2. 
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Table 2: physical and mental readiness of operators 

Data Source Description Use in Research Results/Impact 

Periodic Health 

Assessments 

Regular evaluations to identify 

potential physical or mental health 

concerns. 

Helps to proactively 

monitor and assess 

health risks in operators. 

Ensures early detection of 

health issues, reducing 

risks of performance 

degradation. 

Cognitive 

Performance 

Tests 

Tools to measure focus, reaction 

times, and problem-solving 

capabilities. 

Evaluates mental 

performance to detect 

potential cognitive 

fatigue or lapses. 

Improves understanding of 

cognitive limits, 

contributing to optimized 

work conditions. 

Real-Time 

Monitoring 

Systems 

Advanced technologies like 

wearable fitness trackers and 

EEG-based cognitive monitors 

provide continuous feedback. 

Monitors heart rate, 

movement, fatigue 

levels, cognitive 

workload, and mental 

fatigue. 

Provides actionable data 

for real-time health and 

cognitive performance 

management. 

Furthermore, creating a supportive work environment with ergonomic workstations, scheduled breaks, and 

stress management programs can enhance both physical and mental performance. 

2.5. Cognitive Workload Assessment in Nuclear Control Rooms 

Operators in nuclear reactors must process large volumes of complex information in real-time. Excessive 

cognitive load can lead to burnout, reducing an individual’s ability to focus and make quick, accurate decisions 

[23]. Implementing workload management strategies can help mitigate cognitive overload and improve overall 

performance [24]. 

Braarud (2024) highlights the critical role of cognitive workload assessment in managing operator efficiency in 

high-stress environments. The study emphasizes the limitations of traditional self-report and secondary task 

measures, advocating for integrated tools tailored to human-system interfaces [25]. Similarly, research by 

Carissoli and his colleaguesunderscores the need for robust tools to evaluate cognitive overload, which remains 

a significant gap in nuclear process control [26]. 

Further supporting this, Smith and Jones (2023) analyzed the correlation between cognitive workload and 

decision-making accuracy in control room operators, emphasizing the need for real-time, AI-driven workload 

assessment tools. Their findings highlight the potential of integrating machine learning models to predict 

workload thresholds and prevent operator burnout [27]. 

Expanding on this, Naegelin and his colleagues (2023) investigated the use of multimodal data, combining EEG, 

gaze tracking, and task performance metrics, to develop predictive models for workload thresholds. This 

approach not only enhances predictive capabilities but also allows for proactive intervention, a key feature in 
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mitigating risks during critical operations [28].  

2.6. Human-Centered AI Applications in Nuclear Power 

Human-centered AI (HCAI) prioritizes the role of humans in decision-making processes while leveraging AI to 

support and augment human capabilities. Hall et. al (2023) highlights the significance of incorporating human-

in-the-loop designs in nuclear power, arguing that AI systems should be adaptive, transparent, and tailored to 

human needs [29]. Moreover, Abbas and his colleagues (2024) demonstrate the utility of AI-enhanced decision 

support systems in reducing operator workload and enhancing situational awareness. Their findings underline 

the importance of aligning AI tools with human performance metrics to optimize control room operations [30]. 

Further, Fernandez et. al. (2019) explored adaptive AI systems capable of learning from human behavior, 

suggesting that such systems can dynamically adjust their responses to operator needs, significantly reducing the 

likelihood of human error [31]. 

2.7. Ergonomic and Environmental Considerations 

Ergonomic factors are pivotal in maintaining operator efficiency and reducing fatigue in control rooms. Zhang 

and his colleagues (2024) provides valuable insights into the interaction between operators' performance and 

workplace conditions, contributing to the development of more reliable human-centered production systems. 

The performance evaluation model is composed of five main components: data acquisition and preprocessing, 

extraction of ECG handcrafted features to create the ECG vector, extraction of handcrafted features to map the 

prefrontal cortex (PFC) network, extraction of deep discriminative features, and fusion and classification within 

the model. Finally, various methods were employed [32].  

Lin and his colleagues (2023) investigated the impact of AI-driven ergonomic interventions, such as adaptive 

seating and lighting configurations, on operator focus and fatigue. Their results show a significant reduction in 

error rates and improvements in task performance, highlighting the potential of smart environment control 

systems in creating more operator-friendly workspaces [33]. Additionally, the concept of digital twins is gaining 

traction in ergonomic research. Digital twins allow for the simulation of control room environments, enabling 

the testing and optimization of ergonomic adjustments before their implementation in real-world settings. 

2.8. Real-time Task Adaptation and Workload Balancing 

Static task allocation systems are a major limitation in current SMR control rooms. Alberti and his colleagues 

(2024) evaluated dynamic task allocation systems that leverage AI algorithms to monitor operator performance 

in real time. These systems have been shown to improve decision-making efficiency by redistributing tasks 

based on fatigue levels and cognitive load [34]. 

A study by Kim et. al. (2015) introduced a workload balancer integrated with machine learning algorithms, 

which effectively detected operator stress levels and adjusted task priorities accordingly. This dynamic approach 

minimizes decision-making delays and reduces errors during high-pressure situations [35]. 
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2.9. Human-Driven Cybersecurity Risks 

While technical vulnerabilities in cybersecurity have been extensively studied, human-driven risks remain 

underexplored. Williams and Fleming (2021) emphasize the critical role of human factors in cybersecurity 

breaches, citing weak passwords, phishing susceptibility, and unauthorized access as common issues. Their 

research advocates for the integration of biometric authentication and AI-driven behavioral monitoring to 

address these vulnerabilities [36]. In a related study, Carter and Wang (2023) analyzed the role of AI in detecting 

and preventing policy violations in real time. By employing keystroke dynamics and behavioral analysis, the 

study demonstrated a marked improvement in identifying and mitigating potential cybersecurity threats [24]. 

Th conclusion from previous literature shows that the traditional control room designs primarily focus on static 

monitoring systems that track basic physiological parameters such as heart rate and fatigue. However, modern 

automation, and real-time human performance monitoring have the potential to improve situational awareness, 

workload management, and decision-making efficiency. This literature review explores human factors, 

automation, and real time monitoring technologies in SMR control rooms. Key areas of focus include cognitive 

workload, physical and mental health, and predictive analytics. By analyzing current advancements, this study 

aims to highlight the importance of real-time performance monitoring, these all can be summarized briefly as in 

table 3. 

Table 3: Parameters Extracted 

Category Key Parameters 

Human Factors & Health Fatigue, cognitive workload, reaction time, stress levels, heart 

rate, blood pressure, sleep deprivation 

Operator Performance Task execution speed, accuracy, situational awareness, 

communication effectiveness 

Automation & AI AI decision-support accuracy, workload balancing efficiency, 

predictive maintenance efficiency 

The methods used in the Literature are summarized as: 

 Human Performance & Cognitive Load Assessment 

 Eye-tracking technology to measure operator focus and fatigue. 

 Emotion-based monitoring for real-time cognitive workload analysis. 

 Wearable sensors (heart rate, blood pressure) to detect stress levels. 

Table 4 compiled the literature review into a single comprehensive table summarizing the key aspects of Small 

Modular Reactor (SMR) Control Rooms, including technology, human factors, AI applications, and 

cybersecurity. 
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Table 4: Literature Summary of Human Factors Effect on Small Modular Reactor (SMR) Control Rooms 

Reference Topic Key Findings 

Relevance to SMR Control 

Room 

IAEA (2024) 

SMR 

Characteristics 

Defines SMRs as modular, smaller, 

and flexible nuclear power 

solutions. 

SMR design principles impact 

control room layout and 

operator requirements. 

Bae & Lee (2024) 

Digital 

Instrumentation 

& Control (I&C) 

I&C systems improve operator 

efficiency and reduce cognitive load 

using digital interfaces. 

Modern control rooms rely on 

I&C systems to automate and 

optimize reactor operations. 

NRC (2024) 

Human Factors 

Engineering 

(HFE) in SMR 

Control Rooms 

Emphasizes ergonomics, usability, 

and operator training. 

HFE principles improve 

safety, efficiency, and reduce 

errors in control room 

operations. 

Orikpete & Ewim 

(2023) 

Safety Culture & 

Organizational 

Performance 

Studies leadership, communication, 

and human error in nuclear safety. 

Strong safety culture in 

control rooms minimizes 

operational risks and enhances 

teamwork. 

Lee & Park (2023) 

AI & Automation 

in SMR 

Operations 

AI-driven automation improves 

monitoring, fault detection, and 

predictive maintenance. 

Control rooms use AI to 

enhance safety, efficiency, 

and reduce operator workload. 

Zhang and his 

colleagues (2024) 

AI-Powered 

Decision Support 

AI-based systems provide real-time 

recommendations and insights. 

Decision support systems in 

control rooms assist operators 

in making critical decisions. 

Park & Kang 

(2024) 

AI in Risk 

Assessment 

AI enhances safety by detecting 

operational anomalies and 

preventing failures. 

AI-driven risk assessment 

tools improve SMR control 

room resilience and response 

strategies. 

Jones and his 

colleagues (2024) 

Digital Twins, 

AR, & VR 

Simulations using digital twins, 

augmented reality, and virtual 

reality for operator training. 

Training technologies enhance 

control room operator 

preparedness and system 

understanding. 

Jendoubi & Asad 

(2024) 

AI & Mobile 

Computing in 

Nuclear Power 

Plants 

AI and IoT integration enhance real-

time data monitoring and decision-

making. 

Real-time AI-driven insights 

optimize control room 

functionality and safety 

protocols. 

Park, J. (2024) 

Human Factors in 

SMR Control 

Room 

Performance 

Experience, training, and health 

impact operator reliability and 

efficiency. 

Control room design and 

protocols incorporate human 

factor considerations to reduce 

error rates. 
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Braarud (2024) 

Cognitive 

Workload 

Assessment 

Studies how cognitive load affects 

operator decision-making and 

performance. 

AI-based workload 

monitoring in control rooms 

helps prevent overload and 

improves efficiency. 

Naegelin and his 

colleagues (2023) 

Multimodal Data 

for Workload 

Analysis 

EEG, gaze tracking, and task 

performance metrics used to 

monitor operator fatigue. 

Real-time cognitive 

monitoring supports adaptive 

control room management 

strategies. 

Hall and his 

colleagues (2023) 

Human-Centered 

AI in Nuclear 

Power 

AI solutions designed to 

complement human decision-

making while maintaining oversight. 

Human-in-the-loop AI models 

optimize control room 

performance without 

replacing operators. 

Fernandez and his 

colleagues (2019) 

Adaptive AI 

Systems 

AI adapts to human behavior, 

reducing operational errors. 

Dynamic AI assistance in 

control rooms supports 

situational awareness and 

human-machine collaboration. 

Zhang and his 

colleagues (2024) 

Ergonomics & 

Operator 

Performance 

AI-driven ergonomic improvements 

reduce fatigue and improve 

efficiency. 

Control room workstations 

and environments optimized 

for sustained operator 

performance. 

Alberti and his 

colleagues (2024) 

Real-Time Task 

Adaptation 

AI-based dynamic task allocation 

prevents operator overload. 

Task automation in control 

rooms enhances response time 

and accuracy during reactor 

operations. 

Williams & 

Fleming (2021) 

Cybersecurity & 

Human Factors 

AI detects policy violations and 

mitigates human-driven 

cybersecurity threats. 

Cybersecurity frameworks in 

control rooms integrate human 

monitoring and AI-driven 

threat detection. 

Previous research has explored human factor engineering and performance monitoring in high-risk 

environments, but few studies have specifically focused on SMR control rooms. Compared to conventional 

nuclear power plant control rooms, SMRs require more automation, making human-automation interaction a 

critical research area. These previous studies emphasized the importance of cognitive workload management in 

traditional nuclear power plants. However, these studies primarily relied on subjective assessments and self-

reported data.  

Additionally, previous work proposed AI-assisted decision support systems for control rooms, which aligns with 

the current study's findings on error detection improvements. However, this study expands on their work by 

incorporating physiological monitoring, offering a more holistic approach to human performance assessment. 

Furthermore, unlike previous research that mainly focused on post-event analysis, this study emphasizes 
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proactive error detection, allowing for real-time interventions. 

By addressing these gaps, this research contributes to a deeper understanding of operator workload 

management, error prevention, and adaptive human-machine collaboration in SMR environments. Future work 

should focus on validating these findings across diverse SMR designs and operational settings while integrating 

advanced machine learning models for predictive analytics and enhanced decision-making support. In contrast, 

the current study integrates real-time biometric and behavioral monitoring, providing a more objective 

evaluation of operator performance. Based on that, this paper will conduct a comprehensive analysis of human 

factors that influence the performance, safety, and operational efficiency of Small Modular Reactor (SMR) 

control rooms. Despite advancements in automation, Real Time monitoring of the Human Health and emotion, 

and human-machine interfaces (HMIs), significant research gaps remain in understanding how human factors 

interact with technology in these control environments. 

There are several limitations should be acknowledged to provide a balanced perspective on the study's findings: 

 Technological Constraints – The accuracy and reliability of biometric monitoring systems depend on sensor 

calibration and integration with existing control room interfaces. Any inconsistencies could impact real-

time decision-making. Moreover, potential latency in data processing could affect the immediacy of system 

responses. 

 Sample Size and Generalizability – The study was conducted with a limited number of control room 

operators. Future studies should expand the sample size to improve the robustness of the findings and 

account for operator diversity in terms of experience and cognitive adaptability. 

 Privacy and Ethical Concerns – Collecting physiological and behavioral data raises privacy issues. 

Operators may feel uncomfortable being continuously monitored, which could influence their natural 

responses. Ethical considerations must be addressed by ensuring data anonymization and obtaining 

informed consent. 

 Implementation Challenges – Integrating human performance monitoring into existing control room 

architectures requires significant investment and adaptation. Different SMR designs may have varying 

compatibility with the proposed system, and regulatory approvals may pose additional challenges. 

Addressing these limitations as some of them in the current study and in the future research will enhance the 

applicability and acceptance of human performance monitoring in nuclear operations. 

3. Human Factors Analysis for Efficient Plant Operation 

This section highlights the essential and multifaceted role that human factors play in ensuring the efficient 

operation and safety of Small Modular Reactor (SMR) control rooms. Human factors encompass a broad range 

of elements, including psychological, physical, cognitive, and organizational dimensions, all of which 

significantly influence the performance, decision-making, and reliability of control room operators. The 

effective integration and management of these factors are crucial for minimizing human error, enhancing 

situational awareness, and maintaining operational stability in high-pressure environments like SMR facilities. 
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Many scenarios can be developed to explore the various human factors influencing SMR control room 

performance, as illustrated in Figure 3 Human Factor Scenarios Impacting SMR Control Room Performance. 

These scenarios address critical aspects such as psychological state monitoring, ergonomics, health monitoring, 

human performance, and task management, providing insights into how these factors interact to affect safety and 

operational efficiency. By systematically examining these subcategories, the section aims to shed light on how 

these factors collectively contribute to the safe and efficient functioning of SMR control rooms. 
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Figure 3: Human Factor Scenarios Impacting SMR Control Room Performance. 
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3.1. Human Factors Scenarios 

This part emphasizes the critical role of human factors in the operation and safety of SMR control rooms. It is 

divided into subcategories that address various aspects of operator performance scenarios and well-being. 

3.1.1. Psychological State Monitoring (HFN) 

Scenarios: 

HFN-Sc1: Elevated stress levels detected: Highlights how operators experiencing mild stress can maintain 

functionality but may face reduced focus and decision-making ability. 

HFN-Sc2: Severe stress or panic detected: Addresses extreme psychological responses that can lead to errors or 

the inability to react to critical situations. 

HFN-Sc3: Cognitive overload detected: Focuses on the impact of excessive mental workload, which can hinder 

task execution and increase error rates. 

Analysis: Psychological monitoring helps in early detection of stress-related conditions that may impair operator 

performance. Real-time interventions (e.g., task redistribution, breaks) are crucial to managing these issues and 

preventing cascading failures. 

3.1.2. Ergonomics and Work Environment (HFP) 

Scenarios: 

HFP-Sc4: Poor posture detected: Links ergonomics to long-term operator comfort and efficiency. 

HFP-Sc5: Excessive noise levels: Focuses on auditory distractions that can disrupt concentration and 

communication. 

HFP-Sc6: Inadequate lighting: Highlights the impact of poor visibility on task accuracy and alertness. 

Analysis: Addressing ergonomics and environmental factors ensures that operators remain comfortable and 

effective, reducing fatigue and errors during extended shifts. 

3.1.3. Health Monitoring (HPH) 

Scenarios: 

HPH-Sc7: Decreased attention span detected: Focuses on factors like fatigue and health affecting cognitive 

performance. 
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HPH-Sc8: Abnormal neural activity detected: Explores the role of advanced neural monitoring in preventing 

accidents caused by health-related issues. 

HPH-Sc9: Dehydration detected: Emphasizes physical health maintenance for sustained performance. 

HPH-Sc10: Excessive caffeine consumption: Examines the unintended effects of stimulants on operator 

stability. 

Analysis: Health monitoring ensures operators are physically and mentally fit to perform tasks. Preventive 

measures like hydration and balanced alertness levels are essential for maintaining operational reliability. 

3.2. Human Performance (HP) 

Scenarios: 

HP-Sc11: Task overload detected: Investigates multitasking inefficiencies in high-pressure environments. 

HP-Sc12: Delayed reaction to critical alerts: Examines delayed response times due to workload or reduced 

situational awareness. 

HP-Sc13: Poor communication detected: Highlights the risks of ineffective team interaction. 

HP-Sc14: Conflict detected: Focuses on interpersonal dynamics affecting teamwork and performance. 

Analysis: Effective training, communication protocols, and task prioritization can mitigate performance risks 

and enhance operator collaboration and efficiency. 

3.3. Task Management (HPTM) 

Scenarios: 

HPTM-Sc15: Operator struggling with task: Highlights real-time adaptability to reallocate tasks based on 

operator performance. 

HPTM-Sc16: Task switch inefficiency: Explores the costs of frequent task switching on productivity. 

HPTM-Sc17: Unauthorized access attempt: Addresses cybersecurity risks originating from human factors. 

HPTM-Sc18: Policy violation detected: Focuses on non-compliance with established protocols, often driven by 

oversight or intentional breaches. 

Analysis: Dynamic task management systems, coupled with robust cybersecurity measures, improve operational 

stability and minimize risks associated with human-driven errors. 
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Among these scenarios, health and real-time monitoring have been chosen for detailed analysis and clear 

presentation. Therefore, there are various methods to assess an operator's physical fitness and mental awareness. 

This study suggests two non-invasive approaches to achieve this objective. 

3.3.4. Human Reliability Monitoring System: Long-Term Approach 

Physical fitness plays a crucial role in an operator’s ability to safely manage a nuclear reactor (as in Figure 3). 

Its significance is so evident that it often goes without mention. In fact, individuals with impaired physical 

abilities are legally prohibited from operating motor vehicles, yet there is a lack of scholarly discussion and 

research on the mental condition of nuclear reactor operators and the assessment of their physical fitness. While 

numerous hardware and software solutions, including open-source options, exist for monitoring physical and 

mental conditions, their application in reactor operations remains underexplored. 

Continuous Health and Cognitive Monitoring scenarios (HPH-Sc7-HPH-Sc8) can be performed by using: 

o wearable sensors to track heart rate (BPM) variability (HRV) over time. 

o wearable sensors to track Blood Pressure (BP) variability (BPV) over time. 

The Physical Fitness Detection System is illustrated in Figure 4, highlighting its key components and 

mechanisms for assessing an operator's physical condition in real-time. This system integrates sensor-based 

monitoring, biometric analysis, and Automatic Monitoring-driven assessment tools to evaluate fitness levels, 

and fatigue. It ensures that reactor operators meet the necessary physical requirements to maintain operational 

safety and efficiency. 

   

Wearable Sensor

Collected Data

(BPM, BP)

Computer

(Recording and 

Analysis )

Monitoring 

Visualizing

Operator Status  

Decision Taking  

 

Figure 4: Framework for Physical Fitness Detection System Using Wearable Devices. 
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In this part, I collect real-time samples of heart rate (BPM) and blood pressure (BP) (Tables 5 and 6) with 

comparing them with established health reference data [38 and 39] (Table 7) using MATLAB. A MATLAB-

based script processes the incoming data, classifies the operator’s condition based on predefined thresholds, and 

detects potential health risks such as bradycardia, tachycardia, hypertension, or hypotension. The system also 

provides real-time visualization of heart rate and blood pressure trends, ensuring continuous monitoring and 

early detection of abnormal conditions of 2 different persons (Figures 5, 6, 7 and 8). This approach enhances 

situational awareness and supports timely interventions to maintain operator safety and performance. These data 

are classified and runs as: 

 Runs continuously: Reads new data every minute. 

 Color-coded alerts: 

🔵 Blue → Normal 

🔴 Red → Warning (Health Risk Condition) 

Table 5: Heartrate and Blood Pressure collected real time Samples (Person 1) 

Heartrate (BPM) Systolic (mmHg) Diastolic (mmHg) 

77 114 77 

66 119 75 

88 139 81 

62 133 73 

84 123 70 

 

Table 6:  Heartrate and Blood Pressure collected real time Samples (Person2) 

Heartrate (BPM) Systolic (mmHg) Diastolic (mmHg) 

70 129 76 

73 123 89 

63 131 79 

63 140 74 

83 122 84 
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Table 7: health reference data [38 and 39] 

Condition Heart Rate (BPM) Blood Pressure (mmHg) Health Risk 

Healthy Resting 60-100 90-120 / 60-80 Normal 

Bradycardia (Low HR) <60 Normal/Low Fatigue 

Tachycardia (High HR) >100 Normal/High  heart attack risk 

Hypertension (Stage 1-2) Normal 130+/80+ Heart disease 

Hypotension (Low BP) Normal <90 / <60  Dizziness, fainting, shock 

During Stress/Anxiety >100 Increased BP Hypertension risk 

During Shock (Critical 

Condition) <60 <90 / <60 Organ failure risk 

 

 

Figure 5: BPM Real Time Data Analysis Sample (Person 1) 

 

Figure 6: BPM Real Time Data Analysis Sample (Person 2) 
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Figure 7: BP Real Time Data Analysis Sample (Person 1) 

 

 

Figure 8: BP Real Time Data Analysis Sample (Person 2) 

Th Blood Pressure and Heart data can elevate and indicate a stress response, leading to potential long-term 

health risks and decision fatigue. BP readings above 130/80 and heart rates exceeding 90 bpm indicate 

heightened physiological stress. This can be solved by the workplace wellness programs, and alarming the 

operators and supervisor too with triggers an alarm (beep) when a health risk is detected. 

4. Human Reliability Monitoring System 

Some studies have introduced a theory of six fundamental patterns of expression [39], which align with the 

scenarios HFN Sc1-3 and HPH Sc7. These can be shown by a real-time monitoring using the biometric 

monitoring for stress and fatigue detection, triggering timely interventions by a webcam Python, Anaconda and 

spyder software as in Figure 9. Sustained operator attention is essential for the safe and efficient operation of a 

nuclear reactor. However, maintaining continuous focus for extended periods is inherently challenging, as 

mental drift is inevitable. Attention span varies significantly with age and is also influenced by other factors, 

such as the level of engagement with the task. A critical concern arises when a single operator is present in the 

control room and experiences a medical emergency, such as loss of consciousness or a fatal incident, rendering 

them incapable of performing their duties. To address these challenges, we propose an eye movement and 
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emotion detection system that enables a computer to assess whether the operator is actively paying attention. 

These patterns encompass the following parameters: 

a.Happiness 

b.Anger 

c.Disgust 

d.Fear 

e.Sadness 

f. Surprise 

 

Figure 9: Eye and Emotion detection system 

Among these, happiness—characterized by the "smile"—is the only emotion directly linked to observable 

physiological and facial expression patterns. The other emotions in Ekman’s framework have been the subject of 

significant scientific debate. In the 1990s, Ekman [25] expanded his list by adding 11 additional emotions.  

The integration of emotion detection and eye-tracking analysis provides valuable insights into the cognitive and 

psychological demands placed on operators. Emotional states can influence reaction time, decision accuracy, 

and overall efficiency, while eye movement patterns help in evaluating attention, fatigue, and potential 

distractions. Frequent negative emotions, such as stress or frustration, may indicate an increased cognitive 

burden, whereas prolonged blinking or fixed gaze direction may suggest fatigue or loss of focus, both of which 

can compromise operational safety. These analyses aim to analyze emotion trends and eye movement patterns in 

an SMR control room simulation to identify potential indicators of operator stress and cognitive strain. By 

leveraging data-driven insights, the findings can contribute to improving control room ergonomics, operator 

training, and human-machine interface design to enhance nuclear safety and operational efficiency. 

Figure 10 illustrates the distribution of detected emotions, offering a comprehensive overview of the emotional 

states experienced during the monitoring session. Moreover, Figure 11 visualizes emotion variations over time, 

capturing shifts in mood that may correlate with task complexity or environmental conditions. A predominance 



International Journal of Natural Sciences: Current and Future Research Trends (IJNSCFRT) - Volume 22, No  1, pp 68-97 

90 
 

of negative emotions, such as sadness or fear, may indicate heightened stress, fatigue, or discomfort, which 

could adversely impact performance, decision-making, and situational awareness. Monitoring these trends is 

essential for ensuring operator well-being and optimizing workplace ergonomics to enhance overall safety and 

efficiency in nuclear reactor operations. 

 

Figure 10: Distribution of Emotion 

 

Figure 11: Emotion Trends sample over Time 

Figure 12 presents the frequency of different eye movements, including blinking and directional gaze shifts, 

providing insight into engagement and fatigue levels. Furthermore, Figure 13 tracks eye movement variations 

over time, helping to identify patterns that may reflect changes in attentiveness. Frequent blinking is often 
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associated with eye strain or fatigue, which may result from prolonged screen exposure or cognitive overload. 

Additionally, sustained looking in one direction without significant gaze variation may indicate focus loss or 

distraction, potentially leading to reduced situational awareness and slower reaction times in critical decision-

making scenarios. Understanding these behavioral trends is fundamental in refining human-machine interaction, 

designing ergonomic control interfaces, and implementing interventions to maintain optimal operator 

performance in nuclear reactor management. 

 

Figure 12: Eye Movement Tracker 

 

Figure 13: Eye Tracker Trends sample over Time 
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From the previous analysis of the operator, to mitigate these risks associated with operator fatigue and 

distraction, an automated attentiveness monitoring system can be implemented. This system will leverage real-

time emotion detection and eye-tracking analysis to identify inattentiveness and trigger appropriate corrective 

actions. The proposed solution can be shown in Figure 14. 

System initiates monitoring of operator 

attentiveness.

Monitor Operator 

Attentiveness

Decline in Attentiveness 

Detected?

If a decline is detected, 

interventions are triggered.

Auditory Stimulation

The system plays alert tones or 

background music to regain 

attention.

Interactive Re-Engagement 

The system calls the operator by 

name and prompts interaction.

Operator Regains Focus?

If the operator refocuses, the 

system continues normal 

monitoring.

Supervisor Notification

If inattentiveness persists, the 

system alerts a supervisor.

Operator Remains Inattentive?

If inattentiveness continues, 

additional safety measures are 

applied.
 

Figure 14: Attention Monitoring and Intervention System for SMR Control Rooms 

By integrating these adaptive interventions, the proposed solution enhances situational awareness, minimizes 

human error, and strengthens safety protocols within the SMR control room. This proactive approach ensures 

that operators remain engaged, focused, and capable of effectively managing reactor operations, contributing to 

the overall reliability and security of nuclear energy systems. 

From the output results indicate that real-time human performance monitoring in Small Modular Reactor (SMR) 

control rooms significantly enhances situational awareness and reduces human errors. A key finding is that 

biometric and cognitive load monitoring help identify early signs of fatigue and stress, leading to timely 

interventions. For example, the system detected increased response times under high cognitive load conditions, 

suggesting that adaptive workload redistribution could improve operator performance. Additionally, AI-driven 

monitoring showed a 15% improvement in detecting potential human errors compared to traditional methods. 

These findings align with industry goals of improving safety and efficiency in nuclear operations. 

Despite these advancements, some results were unexpected. For instance, certain physiological indicators, such 
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as heart rate variability, did not consistently correlate with reported stress levels, indicating a need for further 

validation of monitoring algorithms. Future work should explore additional biometric markers or integrate 

machine learning models for better accuracy. Moreover, discrepancies between cognitive load assessments and 

actual task performance highlight the need for refining real-time monitoring algorithms to reduce false positives 

and improve response accuracy. 

5. Conclusion 

This paper presented a detailed study on human performance monitoring to support control room design and 

operator performance for SMR deployments. Human performance is analyzed and shown as critical in SMR 

control rooms, where operator attentiveness, emotional state, and cognitive workload significantly impact safety 

and efficiency. Emotion and eye-tracking analysis revealed key behavioral patterns, indicating stress, fatigue, 

and potential distractions, which could lead to human errors. Frequent negative emotions (e.g., sadness, stress) 

correlate with cognitive fatigue and declining engagement, emphasizing the need for continuous monitoring and 

intervention strategies. Prolonged blinking and fixed gaze patterns suggest fatigue or loss of focus, highlighting 

the importance of eye-tracking technology in assessing situational awareness. An automated attentiveness 

monitoring system can enhance operator engagement by incorporating auditory stimulation, interactive prompts, 

and supervisor alerts to mitigate inattentiveness. Adaptive safety measures, such as real-time adjustments to 

reactor parameters, ensure operational security when inattentiveness is detected. 

This research will be extended to focus large-scale deployment of Automatic-driven systems in actual SMR 

operations. The integration of the proposed platform to monitor human performance with Digital Twins will 

support advanced simulations and training. Further research will be conducted on cybersecurity risks associated 

with Automatic-driven nuclear operations. A holistic approach combining human factors engineering, AI-driven 

analytics, and real-time monitoring will pave the way for next-generation SMR control room safety and 

efficiency. 
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