

45

International Journal of Natural Sciences: Current and Future Research Trends

(IJNSCFRT)
ISSN: 2790-7929

https://ijnscfrtjournal.isrra.org/index.php/Natural_Sciences_Journal/index

Parallel Data Processing Solutions for Software Defined

Radio

Daniel Shannon
a
*, Mo Abdallah

b

a,b
Syracuse University, Syracuse, NY

a
Email: djshanno@syr.edu

b
Email: maabdall@syr.edu

Abstract

Taking into consideration the decisions behind the current day processors used for Software Defined Radio

(SDR) and digital signal processing, we will examine how current machine learning chips, such as Tensor

Processing Units or their components including Systolic Arrays and Matrix Multiplier Units, can be

incorporated into signal processing today. There are several architectural approaches to implementing digital

signal processing with SDR, ranging from Field Programmable Gate Arrays to General Purpose Processors and

Digital Signal Processors. SDR has historically been developed to move algorithms and signal processing away

from hardware that is built for a specific purpose to software that can accommodate new algorithms and

processes with ease. Recently, there have been advances in leveraging data level parallelism for SDR, including

the use of Graphics Processor Units. After consideration of current and previous SDR technology, we propose a

hypothetical Dynamic Band Processing Unit X (DBPUX) for processing multiple bands per cycle in a Digitize

at Intermediate Frequency (DIF) SDR architecture using a Matrix Multiplier Unit (MMU) and a Systolic-Type

Array for specific signal processing tasks. Further work is needed to simulate and apply performance metrics to

the proposed processor.

Keywords: Software Defined Radio; Parallelism; Digital Signal Processing; Tensor Processing Unit; Systolic-

Type Array.

1. Introduction

Traditional radios use fixed hardware components for specific tasks like modulation, filtering, and frequency

tuning that come in the form of analog circuitry and Application Specific Integrated Circuits (ASIC) [1,2,3].

--

Received: 3/15/2024
Accepted: 5/12/2024

Published: 5/25/2024

--

* Corresponding author.

https://ijnscfrtjournal.isrra.org/index.php/Natural_Sciences_Journal/index

International Journal of Natural Sciences: Current and Future Research Trends (IJNSCFRT) - Volume 22, No 1, pp 45-67

46

These hardware components are specialized for the task at hand, and updating the capabilities of the radio

requires updating the hardware, which can be expensive. Software Defined Radio (SDR) can offload many of

the hardware’s functions to a processor for digital signal processing. Processors for SDR come in a variety of

formats, depending on constraints of the problem at hand. SDR generally implies a need for real-time signal

processing for monitoring or communication, so processors must be fast enough to handle the load of real time

radio signals. Radio communication and SDR can be energy intensive, so the ability to process signals at low

energy is always welcome.

SDR processors come in many forms with different motivations and compromises across flexibility and cost.

Digital signals are generally processed on Field Programmable Gate Arrays (FPGA), Digital Signal Processors

(DSP), General Purpose Processors (GPP), Graphics Processing Units (GPU), or some combination of

processors. Analog hardware and ASIC solutions are the most efficient radios in terms of power consumption

and processing speed, but they lack flexibility and are expensive to design. Each type of processor has strengths

and weaknesses with respect to SDR, requiring a balance of power, size, price, and processing speed and

function. Generally, SDR implies the need for real-time processing of signals for radio communication, so the

processor must be fast enough to handle real time signals from the I/O [2,3].

1.1 Background and Previous Work

An examination of what SDR is and how it differs from Analogue Radio with dedicated circuits is introduced.

After understanding what SDR is and what is relevant to both the software and radio aspects of SDR

architecture, we examine different processors being used in SDR today, including FPGAs, DSPs, GPPs, and

GPUs.

With a thorough understanding of the existing processors available for SDR, we begin to examine the Tensor

Processing Unit (TPU) a highly parallel and energy efficient processor for solving Neural Networks in machine

learning domains. We take a closer look at the MMU and the Systolic-Type array that enables much of the

processor’s energy efficiency and parallelism. As we examine the TPU and its approach to parallelism, we begin

to consider how we can use design aspects of the TPU in signal processing for a hybrid DSP capable of

processing multiple radio bands in one instruction cycle.

A careful searching for patterns and trends in current processors used in SDR is done and also identifying

components and design aspects that can be used from each architecture is presented. while reviewing the

processors, looking for highly parallel, low power, low latency solutions is the goal to accommodate the real-

time processing of multiple bands in parallel.

1.2 Software Defined Radio Overview

The complexity of a radio depends on the expected functions of the radio itself, and where the software in SDR

is implemented can vary depending on the resources and reasons for using SDR. SDR implementations can be

grouped into 5 categories:

International Journal of Natural Sciences: Current and Future Research Trends (IJNSCFRT) - Volume 22, No 1, pp 45-67

47

• DSP at Audio Frequencies (DAF) (Figure 1).

• Downconversion to Analog Baseband (DAB) (Figure 2).

• Digitizing at Intermediate Frequency (DIF) (Figure 3).

• Direct Radio Frequency Digitizing (DRF) (Figure 4).

• Hybrid solutions are combinations of the above.

DAF allows signals to be modulated and filtered in tone, which enables digital modulation using analog

transceivers. DAB passes the signal through a Low Pass Filter (LPF) and Analog-to-Digital Converter (ADC) to

a DSP, which can be a GPP with a sound card. Downconversion also enables a lower sample rate, allowing for

low-pass filter decimation and for more CPU cycles to process each sample. These two SDR architectures rely

heavily on analog radios and implement SDR at the start of transmitting or the end of receiving [3].

Figure 1: An outboard processor that outputs the processed radio as sound to a DSP [3].

Figure 2: Direct-to-baseband SDR architecture does a downconversion to a baseband allowing for lower sample

rate due to aliasing [3].

DIF signal processing architecture places the ADC after the signal has passed through a crystal IF filter whose

purpose is to improve the range of blocked interfering signals. Figure 3 shows the block diagram of DIF signal

processing. The IF crystal improves the blocking dynamic range, which enables a lower ADC sample rate as the

crystal acts as a narrow bandwidth anti-aliasing filter. This narrow bandwidth signal is then sent to the DSP for

further signal processing [3].

International Journal of Natural Sciences: Current and Future Research Trends (IJNSCFRT) - Volume 22, No 1, pp 45-67

48

Figure 3: High-IF sampling allows frequency tuning before the ADC to the DSP [3].

The most complete SDR architecture is DRF, which passes the least processed radio signal to the processor

when compared to DAF or DAB architecture. The DRF architecture passes the signal through a Band Pass Filter

(BPF) and RF Amp before ADC and DSP. This shifts most of the radio work to the DSP. DRF and DIF DSPs

can both be implemented as dedicated DSPs or FPGAs. In some applications, GPPs and GPUs can be used for

processing signals in DIF and DRF SDR architectures [3].

Figure 4: Direct RF-sampling applies an RF Amp and band pass filter before ADC [3].

1.2.1 Processor Overview

SDR can be defined as an implementation of the hardware components of analog radio systems in software that

can be updated without updating the hardware. The primary advantage of SDR is flexibility. Given that there are

several components of a radio, including the antennae, tuner, amplifier, filters, that can be implemented in

software, SDR systems require compromise and balance to achieve the speed and efficiency needed for real-

time radio communication. Size, weight, area, and power consumption are important factors to consider when

designing SDE solutions [4].

1.2.2 Field Programmable Gate Array

Field Programmable Gate Arrays (FPGAs) are widely used as the digital signal processing (DSP) core in SDR

architectures such as Digitizing at Intermediate Frequency (DIF) and Direct RF Digitizing (DRFD). These

reprogrammable chips consist of configurable logic blocks that can function as memory, arithmetic units, or

control logic. FPGAs are particularly valuable in research and prototyping environments due to their

reconfigurability, allowing engineers to rapidly iterate on signal processing algorithms and hardware

International Journal of Natural Sciences: Current and Future Research Trends (IJNSCFRT) - Volume 22, No 1, pp 45-67

49

architectures without fabricating custom chips.

While FPGAs typically consume more power and occupy more silicon area than analog radios or Application-

Specific Integrated Circuits (ASICs), their flexibility often offsets these costs — particularly in early-stage or

evolving SDR systems. As shown in Akeela and Dezfouli [2], FPGAs outperformed 16-core GPPs in double-

precision General Matrix Multiply benchmarks. Their performance, measured by the aggregate of Look-Up

Tables (LUTs), flip-flops, and DSP slices scaled by clock frequency, indicates their suitability for compute-

intensive, parallelizable tasks such as modulation, demodulation, and filtering.

The performance for the GPPs perfGPP was determined by multiplying the number of floating-point functional

units FUfp by the number of cores ncores and the clock (frequency) fclock (eq. 1). The performance of the FPGAs

perfFPGA is measured by summing the number of Look Up Tables (LUT), flip-flops, and DSP slices, and then

multiplying that by the clock frequency (eq. 2).

𝑝𝑒𝑟𝑓𝐺𝑃𝑃 = 𝐹𝑈𝑓𝑝 × 𝑛𝑐𝑜𝑟𝑒𝑠 × 𝑓𝑐𝑙𝑜𝑐𝑘 (1)

𝑝𝑒𝑟𝑓𝐹𝑃𝐺𝐴 = (𝐿𝑈𝑇 + 𝑓𝑙𝑖𝑝 − 𝑓𝑙𝑜𝑝𝑠 + 𝐷𝑆𝑃𝑠𝑙𝑖𝑐𝑒𝑠) × 𝑓𝑐𝑙𝑜𝑐𝑘 (2)

Several papers discuss FPGAs and DSPs as interchangeable components. The beauty of FPGAs is that the

hardware is reconfigurable, so everything discussed in the next section on dedicated DSPs can be implemented

in FPGAs. This allows for the initial hardware development to be on FPGAs and then create a dedicated DSP

chip for the final product if desired.

1.2.3 Digital Signal Processor

Digital Signal Processors (DSPs) are specialized microprocessors optimized for executing signal processing

tasks efficiently. Like General Purpose Processors (GPPs), DSPs include core components such as registers,

caches, memory, buses, Arithmetic Logic Units (ALUs), and program counters. However, DSPs are architected

specifically to exploit the parallelism inherent in signal processing, particularly through features like the Parallel

Logic Unit (PLU) and Multiplier-Accumulator (MAC), as seen in the TMS320 DSP line from Texas

Instruments [3,5].

Figure 5: A Multiple and Accumulator convolution applied to a single register [5].

International Journal of Natural Sciences: Current and Future Research Trends (IJNSCFRT) - Volume 22, No 1, pp 45-67

50

When we examine dedicated DSP systems, we can see several similarities and differences compared to GPPs.

Modern GPPs store data and instructions together in memory, implementing the Von Neumann architecture.

DSPs generally implement modified Harvard or Very Long Instruction Word (VLIW) architectures [5]. These

architectures allow for the data and instructions to be accessed in parallel. If there are two separate buses

between memory and data, the number of instructions per cycle is two. The number of instructions per cycle can

be increased with additional buses. Harvard architecture separates the instruction and data in memory, while

Von Neumann architecture combines data and instruction into one memory structure. VLIW architecture

accesses the instruction from memory and specifies the data path for each available functional unit. VLIW can

be categorized as a Single Instruction Multiple Data (SIMD) architecture [3]. This means that one instruction

can be applied to multiple data streams at one time. This can increase performance and decrease power, but

these improvements depend on the parallel nature of the task at hand. Some processes are still sequential and the

gains from VLIW can be lost in those situations. The other type of architecture is Multiple Instructions Multiple

Data (MIMD), which allows separate instructions to operate on each data stream. This enables a higher-level of

parallelism across different memory blocks [3,5].

Several prior studies have explored the trade-offs of using DSPs in SDR systems. For example, Oppenheim and

Schafer [5] highlight that the benefits of VLIW and SIMD architecture in DSPs can be lost when algorithms

contain significant sequential dependencies. In contrast, our proposed DBPUX attempts to isolate sequential

elements through a multiplexer while offloading parallel computation to an MMU, aiming to retain the benefits

of SIMD without bottlenecks caused by instruction dependencies.

Chips such as the Texas Instruments TMS320C5x (Figure 6), TMS320C54x and Motorola DSP563x operate on

fixed point arithmetic, which is useful for consistent, energy efficient processes that operate in a limited range.

Texas Instruments TMS320C4x and TMS320C67xx processors use floating point arithmetic. Fixed point

arithmetic makes sense for signal processing where we repeat operations often and know the range we are

working in. Additional buses can be added to memory for increased parallelism. Multiple Access Memory

through Dual-Access RAM (DARAM) and Multi-ported Memory increase the number of memory

accesses/cycle. The memory access efficiency increases with the number of data buses connecting the memory

to the processor for DARAM, but the hardware costs increase too.

International Journal of Natural Sciences: Current and Future Research Trends (IJNSCFRT) - Volume 22, No 1, pp 45-67

51

Figure 6: Simplified block diagram of the TMS320C5x architecture [5].

The Central Arithmetic Logic Unit (CALU) for the TMS320C5x consists of several smaller units, including a

16x16 bit parallel multiplier, Accumulator (ACC), ALU, Accumulator Buffer (ACCB), and a 0-16-bit barrel

shifter. Several of these components can be found in GPPs, but the modified architecture and the parallel

multiplier allow for increased performance in parallel signal processing. The Auxiliary Register ALU (ARAU),

handles indirect addresses, which frees the CALU to perform parallel operations while the ARAU calculates

addresses.

Memory architecture also plays an important role in DSP performance. Techniques like Dual-Access RAM

(DARAM) and Multi-Ported Memory increase throughput by supporting more simultaneous memory accesses

per cycle. We expand on this concept in DBPUX with dedicated coefficient caching (LC cache) to support

efficient MMU operations, which addresses a limitation in many traditional DSPs where coefficient memory is

often a shared resource.

DSP chips are designed to optimize for and take advantage of the parallel nature of signal processing algorithms

and data. High efficiency is needed for power and real-time I/O considerations. DSPs use many components and

concepts implemented in GPPs. Many of the components in DSPs are modified to accommodate parallelism in

signal processing.

DSPs are a strong foundation for SDR due to their domain-specific optimizations and architectural efficiency.

However, many conventional DSPs face limitations in flexibility, scalability across multiple bands, and real-

time adaptability. The DBPUX builds on DSP principles while integrating design elements from machine

learning hardware, aiming to combine the deterministic performance of DSPs with the parallel throughput of

GPUs and TPUs.

International Journal of Natural Sciences: Current and Future Research Trends (IJNSCFRT) - Volume 22, No 1, pp 45-67

52

1.2.4 Graphics Processing Unit

GPPs are generally insufficient for real-time SDR, but real-time SDR becomes possible when a GPU is used as

a coprocessor with a CPU. CPUs are for solving general problems and are not optimized for real-time signal

processing. CPUs deal in sequential instructions and some compilers implement out of order execution. This

rearranging of sequential instructions makes parallel processing difficult. GPPs can be used in research and

academia but are not suitable for use in critical real-time situations.

When GPUs are used in conjunction with CPUs, the parallel capabilities of the computer can become suitable

for real-time SDR [2,6]. GPUs outperform parallel and serial CPU processing for signal detection performance,

with GPUs being 2 orders of magnitude faster than serial CPUs [6]. For passive RADAR SDR applications,

GPU outperformed CPUs in some cases, such as the implementation of Gradient Adaptive Lattice (GAL) and

Normalized Least Mean Square (NLMS) algorithms. In instances of Range Doppler Elaboration and Cell-

Average Constant False Alarm Rate (CA-CFAR), the multithreaded CPU+GPU outperformed a pure GPU. This

is because the CPU is needed to control the memory and threads, which are optimized for sequential control in a

CPU [7].

This work underscores the potential of leveraging data-level parallelism in SDR, particularly when algorithms

exhibit high degrees of regularity or can be broken down into SIMD-like operations. However, GPU usage

introduces latency from memory transfer overhead and lacks precise timing control required for deterministic

radio protocols. These challenges are critical for real-time SDR applications in constrained environments, such

as mobile or embedded systems.

Kim and his colleagues (2010) demonstrated that the NVIDIA GTX9800 GPU significantly outperformed the

TMS320C6416 DSP across all major SDR modem tasks. While this highlights the GPU’s immense parallel

processing potential, the high-power consumption and limited suitability for embedded, low-power SDR

environments remain concerns. Our work addresses this trade-off by exploring hybrid architectures like the

DBPUX, which aims to retain GPU-like throughput while adopting the lower power characteristics of systolic

array-based processing found in TPUs. The tests included derandomization, Viterbi decoder, demodulation,

channel estimation, permutation, FFT, iFFT, permutation, CC encoder, and randomization [7]. We can compare

the GPU and DSP throughput, tpGPU and tpDSP, with equations (3) and (4) for GPU and DSPs, respectively [7].

The GPU is approximately 90 times faster at Viterbi decoding than the DSP.

𝑡𝑝𝐺𝑃𝑈 =
allocated data per frame 𝑏𝑖𝑡

processing time per frame 𝜇𝑠
×

1

0.5(code rate)
 (3)

𝑡𝑝𝐷𝑆𝑃 =
𝑏𝑖𝑡

𝜇𝑠
×

1

0.5
(code rate) (4)

International Journal of Natural Sciences: Current and Future Research Trends (IJNSCFRT) - Volume 22, No 1, pp 45-67

53

Although GPU performance outpaces that of DSPs in many benchmarked scenarios, the power requirements and

lack of domain-specific instruction sets limit their effectiveness in energy-sensitive or highly time-constrained

SDR contexts. Our design for DBPUX seeks to retain the advantages of parallel processing demonstrated by

GPUs while addressing their power inefficiencies by adopting systolic-array style MMUs and signal-specific

instruction sets.

Many GPUs are in PCs and Laptops, which require more power and area. The historically large power and area

requirements of GPUs are improving and capable of being implemented in mobile devices. This makes GPU

and CPU combinations more appealing as GPU technology improves. Right now, GPUs are not likely to be used

for SDR systems in vehicles, satellites, and hard to reach places. A hybrid approach to SDR and signal

processing that takes advantage of GPUs inherent parallelism with reduced power needs would be highly sought

after in SDR.

GPUs demonstrate that parallelism can accelerate SDR signal processing tasks. However, to achieve lower

power consumption, tighter hardware-software integration, and real-time signal control, our proposed DBPUX

looks to adopt a hybrid approach. By integrating parallel design elements from both DSPs and GPUs, DBPUX

aims to bridge the gap between high-throughput processing and real-time SDR constraints, while keeping

energy requirements low.

1.2.5 Tensor Processing Unit

Tensor Processing Unit (TPU) is a processor that specializes in solving machine learning and neural network

tasks [8,9]. We can explore the intrinsic parallelism of TPUs for machine learning and compare that to other

chip designs that have high intrinsic parallelism, including GPUs and DSPs. Jouppi and his colleagues [8] and

K. Sato and C. Young [9] demonstrated that this architecture achieved unprecedented energy efficiency in ML

inference workloads. While the domain is different, we hypothesize that the same efficiency could apply to

repetitive DSP functions such as FIR filtering, frequency shifting, or matrix transforms, provided the instruction

set and dataflow model are adapted appropriately.

These chips are Complex Instruction Set Computers that specialize in machine learning. This is like Texas

Instrument DSPs discussed earlier, but with specialized instruction sets for machine learning. Out of the

processors discussed, there appears to be a direct relationship between throughput and power consumption,

although current trends are indicating a reduction in the power and area requirements of GPUs. TPU chips are

available in smartphones today to assist in machine learning tasks.

Figure 7 from Jouppi and his colleagues [8] visualizes the TPU architecture as a simplified block diagram. Two

components of the TPU stand out, namely the Systolic Array (SA) and Matrix Multiplier Unit (MMU). SAs

have been in use for several decades [10] and assist in matrix multiplication operations for domain specific

applications. We can map the matrix to a specific algorithm, such as convolution, modulation, filtering, or

transforming. Since processors can be domain specific, or general purpose with features optimized for specific

domains, the method of mapping to the array's function units is determined by the needs of the processor. A

International Journal of Natural Sciences: Current and Future Research Trends (IJNSCFRT) - Volume 22, No 1, pp 45-67

54

function unit takes input data from the previous cell and applies a matrix operation on that output data. A cell

consists of a memory register and an ALU. In DSPs, the data and memory flow in one diagonal direction, as

seen in Figure 8.

In DSP processors, transmitted data and computed data often move orthogonally through the matrix array. In the

TPU, the systolic array takes 256 inputs from the unified memory buffer at one time and operates on each cell at

the same time. The array wave of computation through the MMU is coordinated through controls and pipelined

data. We can measure the efficiency of the MMU by comparing the number of nodes to the number of executed

instructions (eq. 5).

𝐸(𝑙, 𝑝) =
No. of nodes

No. of instructions executes
 (5)

Figure 7: Coded and simplified TPU block diagram. The yellow components are where the primary

computations occur for the machine learning algorithms. Systolic-type arrays and buffers transfer data from I/O

to the computational components [8].

International Journal of Natural Sciences: Current and Future Research Trends (IJNSCFRT) - Volume 22, No 1, pp 45-67

55

Figure 8: Example of systolic-type array computations for DSP [10].

While certain design aspects of TPUs are ideal for signal processing, like their impressive throughput and low

power consumption per instruction, they may not be ideal for signal processing. This is because they are chips

designed for machine learning and solving neural networks. The TPU has a CISC instruction set, which has

instructions specifically for machine learning [8]. TPUs are efficient because they use 8-bit floating-point

precision for matrix multiplication, which may not be sufficient for certain SDR and signal processing

applications. For instance, the TMS320C5x discussed earlier uses 16-bit floating point precision.

TPUs are also proficient at batch processing huge amounts of data in parallel. The batching may be good for

inspecting large amounts of collected radio signal data but may hinder real-time signal processing for critical

communication protocols. TPUs in servers handle large training and inference sets, and TPUs on mobile phones

still handle relatively large amounts of data, such as images and videos, Similar to graphics processors, using a

tensor processor for signal processing may not initially make sense, but given the inherent parallelism with time

to experiment and develop libraries, we may be able to develop ways to leverage TPUs for signal processing in

mobile devices. An ideal solution is likely a hybrid solution, where we combine the strengths of TPUs such as

the MMU and the SA with multiple channel antennas and a multiplexer [9].

Despite TPUs being ill-suited to real-time SDR due to their batch-oriented nature, their core architectural

elements, the SA and MMU, offer a compelling model for low-power, high-throughput signal processing. Prior

implementations assume static input dimensions, tolerance for latency, and pre-trained model. These parameters

conflict with SDR’s need for real-time, streaming, and hardware-integrated processing. The TPU’s reliance on

fused multiply-accumulate operations and quantized weights limits the dynamic range and flexibility required

for certain radio waveforms.

International Journal of Natural Sciences: Current and Future Research Trends (IJNSCFRT) - Volume 22, No 1, pp 45-67

56

1.2.6 SDR Processor Summary

DSP technology has been around since the 1970’s [2] and has continued to improve since then. The digital

processing of signals can take place any time after analog-dialog conversion, including the audio output of an

analog radio. Several types of processors have been used for signal processing in academic and research

environments, including FPGAs, DSPs, GPPs, GPUs, and combinations of the above listed.

The challenge with DSP is to balance power, size, and development time/cost. FPGAs can be used for rapid

development of hardware, but they can be expensive and challenging to program. GPPs can execute any signal

processing algorithm necessary, but they may not be ideal for real-time communication because they do not

specialize in signal processing and lack the appropriate parallelism and speed for real-time processing.

Dedicated DSP chips can take a lot of resources to develop, but they are specialized in signal processing. Some

DSPs are specific to a set of functions, and others are like GPPs with specialized hardware or instructions for

signal processing. GPUs are becoming more common in signal processing. Their parallelism makes them appeal

to parts of signal processing that are repeatable to independent data, such as modulation, filtering, convolution,

and transformation.

Another type of chip that is becoming popular today are machine learning/AI chips, including TPUs. The

Tensor G2 chip we studied from Google is a CISC type architecture for machine learning, but certain aspects of

it make it appealing to signal processing, such as its use of the systolic array and MMU to reduce the power per

instruction to 2pJ [8]. The challenge with using a TPU for signal processing is that they are good for large

batches of data, typically video, audio, or images. More challenging than using batched data for real-time

communication is the complex instruction set designed for solving neural networks.

These findings suggest that there is room to improve upon existing processors to meet demands of modern SDR,

the need for real-time, multi-band signal processing with low power consumption and scalable parallelism. Prior

studies indicate that combining architectural elements from DSPs, GPUs, and TPUs may yield a more efficient

and adaptable design.

This insight motivates the development of a hybrid solution, the Dynamic Band Processing Unit X (DBPUX),

which integrates designs from previous processor architectures while addressing their limitations in the context

of SDR. In the following sections, we propose DBPUX as a domain-specific processor that leverages systolic

arrays, matrix multipliers, and a custom instruction set to support multi-band SDR processing with efficiency

and scalability.

2. Materials and Methods

The initial question we asked ourselves was if we can take advantage of the machine learning chip on the

Google Pixel 7 Pro for signal processing as part of an SDR architecture, or if there is a way to utilize aspects of

the TPU to enhance SDR capabilities and pry new efficiency gains out of DSPs.

Tensor G2 has several processing units, which include a CPU, GPU, and TPU [11]. The CPU has 8 processors,

International Journal of Natural Sciences: Current and Future Research Trends (IJNSCFRT) - Volume 22, No 1, pp 45-67

57

including 2x Arm Cortex-X1 (2.85 GHz), 2x Arm Cortex-A78 (2.35 GHz), and 4x Arm Cortex-A55 (1.8 GHz).

The GPU is an Arm Mali-G710 MP7. The TPU is the Next-gen TPU.

To understand how we can use the TPU for SDR, we examine the architecture of the TPU. We want the TPU to

solve for coefficients in the FIR coefficient cache instead of using weights for neural networks. Additionally, the

TPU’s activation functions need to be overwritten with specific signal processing algorithms. Figure 9 shows

how we can begin to repurpose the TPU for signal processing as part of SDR architecture. Doing so with an

unrooted Pixel 7 Pro and using common libraries is not readily available. It may be possible to override the

TPU’s activation functions with a rooted phone and by creating novel low-level libraries.

Figure 9: Modified TPU block diagram (Figure 7) showing how the Finite Impulse Response (FIR) could

theoretically be mapped to a TPU. The FIR coefficients replace the model weights, and the Activation function

is used as a FIR System Function instead.

International Journal of Natural Sciences: Current and Future Research Trends (IJNSCFRT) - Volume 22, No 1, pp 45-67

58

Figure 10: A modified block diagram from ARRL [3] taking two ADC streams and multiplexing them into

parallel MAC units [5], each using symmetric opcodes. The display opcode shows parallelism, but not the

details of precision or address space. Blue highlights the overlap of registers for multiple MACs and red

highlights the additional ADC buses necessary and the mapping to their respective MACs.

A promising approach is to design a hybrid processor using a multiplexer to take in multiple signals for digital

signal processing and pipeline the bands into multiple instruction channels, offset by different sample steps. We

can split a radio signal over two or more bands to process them in parallel on a single chip and then stream that

to I/O. The instructions will be a memory-register architecture. Each band passes through the multiplexer, which

will split the instruction and pass it to parallel processing as shown in Figure 10. For each clock cycle one bit

from each band is processed in two parallel streams; they are merged at the end for further I/O to the PC. We

can attempt to further refine the necessary instructions to achieve this and determine how to control the data

between the ADCs and the multiplexer. For initial development, we can use simulation software and FPGAs to

determine if the proof of concept works.

3. Results

The Dynamic Band Processing Unit X (DBPUX) is a specialized digital signal processor for processing multiple

bands per cycle. X can be a variable number of bands. For instance, we can implement a DBTPU8, which

processes 8 bands simultaneously on 8 different sample rates, or a DBTPU2 to process 2 bands simultaneously

on 2 different sample rates.

The objective of this processor is to efficiently process multiple bands of signal for a software defined radio,

International Journal of Natural Sciences: Current and Future Research Trends (IJNSCFRT) - Volume 22, No 1, pp 45-67

59

while meeting latency and energy constraints needed for real-time SDR. The SDR architecture digitizes as an

intermediate frequency and passes the initially processed signals to a PC or other DSP. The MUX moves the

sampled bands through the MMU but also is available for the registers to access if any sequential operations are

needed on the ADC stream. With this design most of the data and instructions will be around the algorithms of

signal processing. The streamed and processed data is passed directly from the MUX to the MMU and back to

the MUX.

3.1 Dynamic Band Processing Unit

The DBPUX is designed to take advantage of the anti-aliasing characteristics of DIF SDR architecture, where

digitizing at an intermediate frequency enables anti-aliasing before processing, as seen in Figure 11. [3]. With

the correct bandwidth and sample rate, we propose layering anti-aliased bands within a sample to efficiently

pipeline signals to the processor. The lower sample rate of IF digitization allows sampling more bands in each

period.

Figure 11: A DIF SDR architecture that demonstrates how digitizing at intermediate, anti-aliased, frequencies

can allow for multiband processing in the DBPUX. The DBPUX is designated in red.

The objective of this processor is to efficiently process multiple bands of signals for a software-defined radio

(SDR). The SDR architecture digitizes as an intermediate frequency and passes the initially processed signals to

a PC or other DSP. The MUX moves the sampled bands through the MMU and is also available for the registers

to access if any sequential operations are needed on the ADC stream. With this design, most of the data and

instructions will focus on the algorithms of signal processing. The streamed and processed data is passed

directly from the MUX to the MMU and back to the MUX depicted in Figure 12.

3.2 Processor Components and Characteristics

The Program Counter (PC) serves as the core component responsible for tracking and driving instructions and

programs within the system. Complementing this, Registers provide fast, nearby memory access to ensure

efficient computation. The Arithmetic Logic Unit (ALU) handles basic, non-signal processing arithmetic

operations, while the Register Arithmetic Logic Unit (RALU) is specifically designed for address arithmetic

International Journal of Natural Sciences: Current and Future Research Trends (IJNSCFRT) - Volume 22, No 1, pp 45-67

60

calculations. Signal processing functions for different frequency bands are managed within H(B), which works

in conjunction with Coefficient Memory to store processing coefficients for each band, both of which play

crucial roles in the Matrix Multiplier Unit (MMU).

The Systolic-Type Array (STA) prepares the streamed signal data before it is processed by the MMU. The

MMU itself is responsible for applying the stored functions to the respective frequency bands, operating as a

continuous processing stream between the analog-to-digital converter (ADC) and input/output (I/O) interfaces.

The system’s Memory Architecture is categorized into Data Memory, Instruction Memory, and Coefficient

Memory, supported by caching mechanisms such as the L1 cache for data and instruction memory and the LC

cache for coefficient storage. Addressing beyond the standard instruction space is managed through the Direct

Memory Pointer (DMP), ensuring seamless access to extended instruction sets.

To facilitate seamless signal routing, the Band Multiplexer (MUX) acts as the bridge between the ADC, I/O,

and the main processing unit. Data flow across the architecture is maintained through the Address Bus, which

ensures accurate transportation of instruction and data memory addresses, and the Data Bus, which connects

registers to the H(B) for efficient processing. Together, these components form a cohesive system designed for

high-performance signal processing in a structured and efficient manner.

Figure 12: Simplified block diagram of the DBPU8 for DSP. The MMU processes signal processing algorithms

on 8 bands at a time.

3.3 Registers

International Journal of Natural Sciences: Current and Future Research Trends (IJNSCFRT) - Volume 22, No 1, pp 45-67

61

The system incorporates a set of General Registers, consisting of 2
5
=32 registers (r0 to r31), each with an 11-bit

capacity. These registers serve as the primary storage locations for general-purpose data and intermediate

computations, ensuring efficient processing and rapid access. The H Registers provide a specialized storage

mechanism with 2
3
=8 registers (b0 to b7), each also 11 bits in size. These registers are designed to store hard

coded and custom H functions to optimize the execution of designated signal processing functions.

3.4 Instruction Set

The system's instruction set architecture (ISA) is designed to support up to 32 distinct instructions, as

determined by the first five bits of the opcode (Table 1). These instructions encompass arithmetic, logical,

memory, and control operations. Fundamental arithmetic operations include addition (add, opcode 0),

subtraction (sub, opcode 1), multiplication (mul, opcode 2), and division (div, opcode 3). Their immediate-

value counterparts, addi (opcode 4), subi (opcode 5), muli (opcode 6), and divi (opcode 7), allow for direct

computation with embedded constants.

Logical operations include and (opcode 8), or (opcode 9), xor (opcode 10), and not (opcode 11), enabling

bitwise manipulations. Comparison instructions facilitate conditional execution, with less than (lt, opcode 12),

greater than (gt, opcode 13), less than or equal (lte, opcode 14), and greater than or equal (gte, opcode 15).

The architecture also includes specialized operations such as equality check (eqq, opcode 16), load coefficient

(lc, opcode 17), and store coefficient (sc, opcode 18). Data movement instructions include load immediate (li,

opcode 19), store immediate (si, opcode 20), load data (ld, opcode 21), and store data (sd, opcode 22).

Memory management and matrix operations are handled by register matrix move (rmm, opcode 23), load

matrix memory (lmm, opcode 24), and matrix multiplier unit operation (mmu, opcode 25). Control flow is

managed with jump (opcode 26) and conditional branching, including branch if not equal (bne, opcode 27) and

branch if equal (beq, opcode 28). Additionally, matrix-specific memory operations, such as store matrix

memory high (smmh, opcode 29) and register matrix move high (rmmh, opcode 30), are available. Finally, the

repeat (rpt, opcode 31) instruction facilitates loop execution for optimized performance.

International Journal of Natural Sciences: Current and Future Research Trends (IJNSCFRT) - Volume 22, No 1, pp 45-67

62

Table 1: Instruction set for DBPUX.

3.5 Instruction Size

The DBPUX uses a varying instruction set size to maintain a consistent address space. Each instruction begins

with a 3-bit overhead to indicate its type, followed by a 5-bit opcode that defines the operation being performed.

The instruction formats are categorized into five primary types: Harvard (H), Arithmetic (A), MMU (M), Move

(O), and Jump (J), each tailored to specific processing requirements (Table 2).

The Harvard (H) format consists of 26 bits and is structured as op(5) r(5) c(11) r(5). This format is designed for

operations that require access to both register and coefficient memory, enabling efficient data handling in the

processing pipeline. It allows instructions to specify a source register, a coefficient value, and a destination

register, facilitating optimized signal processing.

The Arithmetic (A) format varies between 20 and 26 bits, depending on whether an immediate constant is used.

It follows the structure op(5) r(5) r(5) r/c(5/11), where the last field can either reference a third register (5 bits)

or an immediate constant (11 bits). This flexibility allows the execution of standard arithmetic operations such

as addition, subtraction, multiplication, and division while accommodating both register-based and immediate-

value calculations.

The Matrix Multiplier Unit (MMU) format (M) ranges from 13 to 19 bits, formatted as op(5) b(3)

r/addr/c(5/11/11). This format is specifically optimized for matrix operations, referencing b(3) to select an H

register and using the final field to store either a register reference (5 bits), an address (11 bits), or a coefficient

Opcode Operation Opcode Operation

0 add 16 eqq

1 sub 17 lc

2 mul 18 sc

3 div 19 li

4 addi 20 si

5 subi 21 ld

6 muli 22 sd

7 divi 23 rmm

8 and 24 lmm

9 or 25 mmu

10 xor 26 jump

11 not 27 bne

12 lt 28 beq

13 gt 29 smmh

14 lte 30 rmmh

15 gte 31 rpt

International Journal of Natural Sciences: Current and Future Research Trends (IJNSCFRT) - Volume 22, No 1, pp 45-67

63

(11 bits). This design ensures that matrix operations efficiently integrate with the broader computational

workflow.

The Move (O) format is fixed at 26 bits, structured as op(5) r(5) r(5) addr(11). It facilitates data transfer between

registers and memory, enabling efficient data manipulation while ensuring that register contents can be stored or

loaded from memory locations with a direct address reference.

The Jump (J) format is 16 bits in length, following the structure op(5) addr(11). This format is designed for

control flow operations, allowing the processor to alter execution paths based on specified conditions. The 11-

bit address field ensures that jumps can target a wide range of instruction locations within the program space.

Table 2: Instruction formats for DBPUX.

Type Symbol Size (bits) Format

Harvard H 26 op(5) r(5) c(11) r(5)

Arithmetic A 20-26 op(5) r(5) r(5) r/c(5/11)

MMU M 13-19 op(5) b(3) r/addr/c(5/11/11)

Move O 26 op(5) r(5) r(5) addr(11)

Jump J 16 op(5) addr(11)

3.6 Instruction Pipeline

The DBPUX instruction pipeline follows a structured sequence of six stages, ensuring efficient execution of

instructions while optimizing performance in a pipelined processor architecture. The stages Fetch, Decode,

Execute, Memory, Write, and MMU Update operate concurrently in different pipeline stages to increase

instruction throughput.

The Fetch (fi) stage retrieves the next instruction from Instruction Memory. The PC directs the processor to the

correct memory location, and the instructions are loaded into the pipeline. If the instruction set supports

variable-length encoding, the fetch stage may require additional cycles to retrieve longer instructions.

Once fetched, the instruction enters the Decode (di) stage, where it is interpreted, and its operands are identified.

The opcode determines the operation type, and the relevant registers, immediate values, or memory addresses

are extracted.

During the Execute (xi) stage, the actual computation takes place. Depending on the instruction type, different

functional units may be utilized. The ALU performs operations like addition, subtraction, multiplication, and

bitwise logic. If the instruction involves matrix operations, the MMU is activated. For branch/jump instructions,

the PC is updated, and wrongly predicted branches may trigger pipeline flushing.

International Journal of Natural Sciences: Current and Future Research Trends (IJNSCFRT) - Volume 22, No 1, pp 45-67

64

The Memory (mi) stage is responsible for accessing data from Data Memory. This stage is crucial for load (ld)

and store (sd) instructions, where memory access times can impact performance.

In the Write (wo) stage, the results of the instruction are written back to the register file. If the instruction

involves memory access, the retrieved data is stored in the destination register.

For matrix operations, the MMU Update (ui) stage finalizes computations by executing one cycle of the MMU

and updating the H Registers and Coefficient Memory. This ensures that matrix transformations and

multiplications are correctly stored and ready for subsequent operations.

3.7 Memory Structure

DBPUX employs a Harvard architecture system, which maintains separate memory spaces for data, instructions,

and coefficients. This separation enables parallel access to different types of memory, significantly improving

performance, especially in signal processing and high-throughput computation applications. This architecture

ensures efficient execution by reducing memory access bottlenecks, a common issue in Von Neumann

architecture where instructions and data share a common memory bus.

The three memory types, Data, Instruction, and Coefficient each have 256 words per block with a varying

number of blocks. The Coefficient memory contains the least blocks and total bits as it is generally more stable

than the data and instruction memory.

Table 3: Memory structure for DBPUX.

Memory Type Blocks Words/Block Bits/Word Total Bits

Data 1000 256 16 4,096,000

Instruction 1000 256 29 7,424,000

Coefficient 32 256 11 90,112

Total 2032 256 11,610,112

3.8 Cache Levels

The DBPUX processor has a dual-cache system to optimize memory access and improve processing efficiency.

This system consists of a unified L1 cache for both data and instructions and a dedicated LC cache for

coefficient memory. These caches help reduce memory bottlenecks, enhance execution speed, and maintain

efficient data flow within the processor.

The L1 cache is a unified cache with 128 blocks, designed to store both instruction and data memory. This

architecture enables the processor to dynamically allocate cache space between data and instructions based on

workload demands. Frequently accessed instructions and data are stored within the L1 cache, reducing memory

access latency. By enabling simultaneous instruction to fetch and access data, the L1 cache minimizes stalls and

maximizes computational throughput. The replacement policy for this cache is Least Recently Used (LRU).

International Journal of Natural Sciences: Current and Future Research Trends (IJNSCFRT) - Volume 22, No 1, pp 45-67

65

The DBPUX also incorporates an LC cache, a specialized 8-block cache dedicated to coefficient memory. This

cache is optimized for signal processing workloads, where matrix operations and precomputed coefficients play

a vital role in accelerating computations. The LC cache operates using an LRU replacement policy, ensuring

that frequently accessed coefficients are retained while less-used values are evicted when new data is needed.

By reducing the need for repeated memory accesses, the LC cache enhances the efficiency of the Matrix

Multiplier Unit (MMU).

3.9 DBPUX Constraints, Limitations, and Future Work

While this study proposes a novel multi-band digital signal processing architecture, several limitations must be

acknowledged. First, the DBPUX is a conceptual processor and has not been implemented in hardware or

simulated in software. Thus, performance metrics such as instruction latency, power consumption, and thermal

efficiency are speculative and extrapolated from related architectures like the TPU and TMS DSP families. The

proposed instruction set has not yet been tested in FPGA or compiler toolchains, making real-time processing

assumptions unverified. Additionally, the use of mobile TPUs for SDR remains constrained by limited

developer access and the absence of low-level control on most consumer devices. Future work will involve

building a DBPUX simulation environment to validate the instruction pipeline, memory architecture, and multi-

band processing performance.

There are several constraints that need to be taken into consideration, such as energy usage, size, and cost.

Connecting 8 antennas to one processor may prove impractical, though we may use one antenna with a sample

rate synchronized tuner. We need to determine benchmark tests that cover efficiency and performance to

compare our processor against.

There are several next steps we can take to continue studying and prototyping DBPUX. We can virtualize the

prescribed ISA. Having a virtual ISA to simulate processing digital signals will allow us to build tests and

highlight areas of the instruction set that need to be refined. We can simulate multi-band signals using tools like

GNU Radio [12] and then use the virtual ISA to process the simulated signals. If the ISA can successfully

process the simulated signals, then we can begin to estimate the efficiency (5) of the processor and the

implementation of the systolic-type array in the MMU that does the multi-band processing. After developing a

virtual processor, we can implement the solution in an FPGA or a protype chip.

4. Conclusion

SDR technology has come a long way since its inception in the 1970s. Today, there are several options for SDR

depending on your size, energy, cost, and speed of development requirements. SDR's main advantage is the

ability to update algorithms and signal processing systems by updating the software and not the hardware.

Today, GPPs, GPUs, FPGAs, and DSPs can all be used for SDR in some capacity. FPGAs and DSPs are the

best suited for real-time critical radio communication, but GPPs and GPUs perform better each day as GPUs

become more affordable and accessible. TPUs share many similar traits to GPUs and are being added to

personal mobile devices.

International Journal of Natural Sciences: Current and Future Research Trends (IJNSCFRT) - Volume 22, No 1, pp 45-67

66

We proposed DBPUX as the processor for a DIF SDR architecture, enabling the processing of multiple bands

per instruction after the intermediate frequencies have been digitized and anti-aliased. DBPUX takes advantage

of a Harvard architecture to perform predefined DSP algorithms on signals passed through the MMU. This has

the potential to reduce the energy per instruction to less than 2 pJ, as seen in the TPU’s implementation of

Systolic-Type Arrays and MMUs. There are several limitations to the hypothetical processor that need to be

tested and verified, but we have outlined the steps needed to bring the idea to fruition and test its efficiency as

an SDR processor.

With parallel processing technology improving the performance of GPUs, TPUs, and other hybrid solutions,

more options for DSP are regularly becoming available to consumers and researchers. From here we can

continue to search for low power, highly parallel digital signal processors for software defined radio.

References

[1] T. Ulversoy, “Software Defined Radio: Challenges and Opportunities,” IEEE Communications Surveys

& Tutorials, vol. 12, no. 4, pp. 531–550, 2010, doi: https://doi.org/10.1109/surv.2010.032910.00019.

[2] R. Akeela and B. Dezfouli, “Software-defined Radios: Architecture, state-of-the-art, and challenges,”

Computer Communications, vol. 128, pp. 106–125, Sep. 2018, doi:

https://doi.org/10.1016/j.comcom.2018.07.012.

[3] H. Ward Silver, The ARRL Handbook for Radio Communications 2023, 100th ed., vol. 2. The

American Radio Relay League, Inc., 2022.

[4] P. W. Garver, R. Abler, E. J. Coyle, and J. Narayan, “Comparisons of high performance software radios

with size, weight, area and power constraints,” Proceedings of the 9th ACM international workshop on

Wireless network testbeds, experimental evaluation and characterization, pp. 17–24, Sep. 2014, doi:

https://doi.org/10.1145/2643230.2643238.

[5] A. V. Oppenheim and R. W. Schafer, Discrete-time Signal Processing, 3rd ed. Harlow: Pearson

Education Limited, 2010.

[6] M. Bernaschi, A. D. Lallo, R. Fulcoli, E. Gallo, and L. Timmoneri, “Combined use of graphics

processing unit (GPU) and Central Processing Unit (CPU) for passive radar signal & data elaboration,”

International Radar Symposium, pp. 315–320, Oct. 2011.

[7] J. Kim, S. Hyeon, and S. Choi, “Implementation of an SDR system using graphics processing unit,”

IEEE Communications Magazine, vol. 48, no. 3, pp. 156–162, Mar. 2010, doi:

https://doi.org/10.1109/mcom.2010.5434388.

[8] N. Jouppi, C. Young, N. Patil, and D. Patterson, “Motivation for and Evaluation of the First Tensor

Processing Unit,” IEEE Micro, vol. 38, no. 3, pp. 10–19, May 2018, doi:

https://doi.org/10.1109/surv.2010.032910.00019
https://doi.org/10.1145/2643230.2643238
https://doi.org/10.1109/mcom.2010.5434388

International Journal of Natural Sciences: Current and Future Research Trends (IJNSCFRT) - Volume 22, No 1, pp 45-67

67

https://doi.org/10.1109/mm.2018.032271057.

[9] K. Sato and C. Young, “An in-depth look at Google’s first Tensor Processing Unit (TPU),” Google

Cloud Blog, 2021. https://cloud.google.com/blog/products/ai-machine-learning/an-in-depth-look-at-

googles-first-tensor-processing-unit-tpu

[10] J. Moreno and T. Lang, Matrix Computations on Systolic-Type Arrays. Springer Science & Business

Media, 1992.

[11] R. Triggs, “Google Tensor G2 chip: Everything you need to know,” Android Authority, Aug. 16, 2023.

https://www.androidauthority.com/google-tensor-g2-explained-3216087/

[12] “GNU Radio,” https://wiki.gnuradio.org/index.php/Main_Page

https://doi.org/10.1109/mm.2018.032271057
https://cloud.google.com/blog/products/ai-machine-learning/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu
https://cloud.google.com/blog/products/ai-machine-learning/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu
https://www.androidauthority.com/google-tensor-g2-explained-3216087/

